Regularity results for the non cutoff Kac equation

  • Lorenzo Pareschi


This paper is devoted to the study of some regularity properties of the solution to the non cutoff Kac equation. By introducing suitable Lyapunov functionals we prove that the solution to the non cutoff Kac equation converges to equilibrium in various Sobolev spaces.


Cauchy Problem Boltzmann Equation Regularity Result Regularity Property Collision Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In questo articolo vengono studiate alcune proprietà di regolarità della soluzione dell'equazione di Kac senza cutoff. Introducendo opportuni funzionali di Lyapunov si prova che l'equazione senza cutoff converge all'equilibrio in vari spazi di Sobolev.


  1. [1]
    R. A. Adams,Sobolev Spaces, Academic Press, New York, (1975).MATHGoogle Scholar
  2. [2]
    L. Arkeryd,Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat. Mech. Anal.77 (1981), pp. 11–21.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    N. M. Blachman,The convolution inequality for entropy powers, IEEE Trans. Inform. Theory,2, (1965), pp. 267–271.CrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Brezis,Analyse fonctionnelle, théorie et applications, Masson, Paris (1983).MATHGoogle Scholar
  5. [5]
    C. Cercignani,The Boltzmann Equation and its Applications, Springer-Verlag, Berlin (1988).MATHGoogle Scholar
  6. [6]
    C. CercignaniR. IllnerM. Pulvirenti,The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1995).Google Scholar
  7. [7]
    P. Degond—B. Lucquin-Desreux,The Fokker-Plank asymptotics of the Boltzmann collision operator in the Coulomb case, Math. Mod. Meth. Appl. Scie.,2 (1992).Google Scholar
  8. [8]
    L. Desvillettes,About the regularizing properties of the non cutoff Kac equation, Comm. Math. Phys.,162,2, (1995), pp. 417–440.CrossRefMathSciNetGoogle Scholar
  9. [9]
    L. Desvillettes,On asymptotics of the Boltzmann equation when the collisions become grazing, Trans. Theo. Stat. Phys.,21 (1992), pp. 259–276.CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    R. J. DiPernaP. L. Lions,On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math.,130, (1989), p. 321.CrossRefMathSciNetGoogle Scholar
  11. [11]
    E. GabettaL. Pareschi,About the non cutoff Kac equation: uniqueness and asymptotic behaviour, Comm. Nonlin. Appl. Anal.,21, (1997), pp. 1–21.MathSciNetGoogle Scholar
  12. [12]
    E. GabettaL. Pareschi,Boundedness of moments and trend to equilibrium for the non cutoff Kac equation, Rendiconti Circolo Matematico di Palermo, Serie II, Suppl.45 (1996), pp. 285–298.MathSciNetGoogle Scholar
  13. [13]
    E. GabettaG. Toscani,On convergence to equilibrium for Kac's caricature of a Maxwell gas, J. Math. Phys.,35, 1 (1994), pp. 190–208.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    H. Grad,Principles of the kinetic theory of gases, Flugge's Handbuch der Physik,12 (1958), pp. 205–294.MathSciNetGoogle Scholar
  15. [15]
    M. Kac,Probability and related topics in the physical sciences, New York (1959).Google Scholar
  16. [16]
    P. L. Lions,On Boltzmann and Landau equation, Cahiers de Mathématiques de la décision,9220, to appear on Philos. Trans. Roy. Soc.Google Scholar
  17. [17]
    P. L. LionsG. Toscani,A strengthened central limit theorem for smooth densities, J. Funct. Anal.,129 (1995), pp. 148–167.CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    H. P. McKean Jr.,Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Arch. Rat. Mech. Anal.,21 (1966), p. 343.CrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Pulvirenti, G. Toscani,The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation, Ann. Mat. Pura e Appl. (IV)171 (1996), pp. 181–204.CrossRefMathSciNetMATHGoogle Scholar
  20. [20]
    H. Tanaka,An inequality for a functional of probability distribution and its application to Kac's one dimensional model of a Maxwellian gas, Wahrsch. Verw. Geb.,27 (1973), pp. 47–52.CrossRefMATHGoogle Scholar
  21. [21]
    G. Toscani,Lyapunov functionals for a Maxwell gas, Arch. Rat. Mech. Anal.,119 (1992), pp. 301–307.CrossRefMathSciNetMATHGoogle Scholar
  22. [22]
    C. TruesdellR. Muncaster,Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas, Academic Press, New York (1980).CrossRefGoogle Scholar
  23. [23]
    E. Wild,On Boltzmann's equation in the kinetic theory of gases, Proc. Camb. Philos. Soc.,47, (1951), p. 602.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1996

Authors and Affiliations

  • Lorenzo Pareschi
    • 1
  1. 1.Dipartimento di MatematicaUniversità di FerraraFerraraItalia

Personalised recommendations