Mycotoxin Research

, Volume 22, Issue 1, pp 48–53 | Cite as

Molecular detection of ochratoxin A producers: an updated review

  • L. Niessen


Ochratoxin A (OTA) can be detected worldwide from various food and feed sources. It is produced byPenicillium nordicum andP. verrucosum as well as by variousAspergillus species, withA. ochraceus andA. carbonarius as the predominant producers. Various pairs of PCR primers based on AFLP, RAPD as well as primers specific to ribosomal RNA and genes coding for calmodulin and OTA biosynthetic pathway components were recently developed to detect and identify OTA producers in conventional and real-time PCR assays. Application of such assays in contaminated samples was demonstrated only in few cases. The current review gives an updated overview over the methods at hand.


Aspergillus diagnosis ochratoxin A PCR Penicillium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castella G, Larsen TO, Cabañes FJ, Schmidt H, Alboresi A, Niessen I, Färber P, Geisen R (2002) Molecular characterization of ochratoxin A producing strains of the genusPenicillium. Syst Appl Microbiol 25: 74–83PubMedCrossRefGoogle Scholar
  2. 2.
    Van der Merwe KJ, Steyn PS, Fourie LF, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced byAspergillus ochraceus wilh. Nature 205: 1112–1113PubMedCrossRefGoogle Scholar
  3. 3.
    Kuiper-Goodman T, Scott PM (1989) Risk assessment of the mycotoxin ochratoxin A. Biomed environ Sci 2: 179–284PubMedGoogle Scholar
  4. 4.
    Delacruz L, Bach PH (1990) The role of ochratoxin A metabolism and biochemistry in animal and human nephropathy. Journal of Biopharmaceutical Science 1: 277–304Google Scholar
  5. 5.
    Huff, JE (1991) Carcinogenicity of ochratoxin A in experimental animals. In: Castegnaro M, Plestina R, Dirheimer G, Chermozemsky N, Bartsch H. (eds) Mycotoxins, Endemic Nephropathy and Urinary Tract Tumors, IARC, Lyon, 229–244Google Scholar
  6. 6.
    Chelkowski J (1991) Preface and introduction. In: Chelkowski J (ed) Ceral Grain Mycotoxins, Fungi and Quality in Drying and Storage. Elsevier, Amsterdam, pp. I-XX.Google Scholar
  7. 7.
    Northold MD (1979) The effect of water activity and temperature on the production of some mycotoxins. PhD thesis, University of WageningenGoogle Scholar
  8. 8.
    Sweeney M, Dobson ADW (1999) Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett 175: 149–163PubMedCrossRefGoogle Scholar
  9. 9.
    Larsen TO, Svendsen A, Smedsgaard J (2001) Biochemical characterization of ochratoxin A-producing strains of the genusPenicillium. Appl Environ Microb 67: 3630–3635CrossRefGoogle Scholar
  10. 10.
    Niessen I, Schmidt H, Mühlencoert E, Färber P, Karolewiez A, Geisen R (2005) Advances in the molecular diagnosis of ochratoxin A-producing fungi. Food Addit Contam 22: 324–334PubMedCrossRefGoogle Scholar
  11. 11.
    Taniwaki MH, Pitt JI, Teixeira AA, Imanaka BT (2003) The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int J Food Microbiol 82: 173–179PubMedCrossRefGoogle Scholar
  12. 12.
    Martins ML, Martins HM, Gimeno A (2003) Incidence of microflora and of ochratoxin A in green coffee beans (Coffea arabica). Food Addit Contam 20: 1127–1131PubMedCrossRefGoogle Scholar
  13. 13.
    Pardo E, Marin S, Ramos AJ, Sanchis V (2004) Occurrence of ochratoxigenic fungi and ochratoxin A in green coffce from different origins. Food Sci Technol Int 10: 45–50CrossRefGoogle Scholar
  14. 14.
    Battilani P, Pietri A, Bertuzzi T, Languisco L, Giomi P, Kozakiewiez Z (2003) Occurrence of ochratoxin A-producing fungi in grapes grown in Italy. J Food Protect 66: 633–636Google Scholar
  15. 15.
    Serra R, Abrunhosa L, Kozakieviez Z, Venancio A (2003) BlackAspergillus species as ochratoxin A producers in Portuguese wine grapes. Int J Food Microbiol 88: 63–68PubMedCrossRefGoogle Scholar
  16. 16.
    Abarea ML, Accensi F, Bragulat MR, Castellá G, Cabañes FJ (2003)Aspergillus carbonarius as the main source of ochratoxin A contamination in dried vine fruits from the Spanish market. J Food Protect 66: 504–506Google Scholar
  17. 17.
    Tjamos SE, Antoniou PP, Kazantzidou A, Antonopoulos DF, Papageorgiou I, Tjamos EC (2004)Aspergillus niger andAspergillus carbonarius in Corinth raisin and wine-producing vineyards in Greece: Population composition, Ochratoxin A production and chemical control. J Phytopathol (Berlin) 152: 250–255CrossRefGoogle Scholar
  18. 18.
    Schmidt H, Ehrmann M, Vogel RF, Taniwaki MH, Niessen L (2003) Molecular typing ofAspergillus ochraceus and construction of species specific SCAR-primers based on AFLP. Syst Appl Microbiol 26: 434–438CrossRefGoogle Scholar
  19. 19.
    Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification ofAspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97: 899–909PubMedCrossRefGoogle Scholar
  20. 20.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414PubMedCrossRefGoogle Scholar
  21. 21.
    Schmidt H, Bannier M, Vogel RF, Niessen L (2004) Detection and quantification ofAspergillus ochraceus in green coffee by PCR. Lett Appl Microbiol 38: 464–469PubMedCrossRefGoogle Scholar
  22. 22.
    Mühlencoert E, Mayer I, Zapf MW, Vogel RF, Niessen L (2004) Production of ochratoxin A byAspergillus ochraceus. Eur J Plant Pathol 110: 651–659CrossRefGoogle Scholar
  23. 23.
    Adye J, Mateles RI (1964) Incorporation of labelled compounds in aflatoxins. Biochim Biophys Acta 86: 418–420PubMedGoogle Scholar
  24. 24.
    Pelegrinelli-Fungaro MH, Vissoto PC, Sartori D, Vioas-Boas LA, Furlaneto MC, Taniwaki MH (2004) A molecular method for detection ofAspergillus carbonarius in coffee beans. Curr Microbiol 49: 123–127CrossRefGoogle Scholar
  25. 25.
    Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40: 87–109PubMedCrossRefGoogle Scholar
  26. 26.
    González-Salgado A, Patino B, Vázquez C, González-Jaén MT (2005) Discrimination ofAspergillus niger and otherAspergillus species belonging to sectionNigri by PCR assays. FEMS Microbiol Lett 245:353–361PubMedCrossRefGoogle Scholar
  27. 27.
    White TJ, Burns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneties. In: Inis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, 315–322Google Scholar
  28. 28.
    Patino B, González-Salgado A, González-Jaén MT, Vázquez C (2005) PCR detection assays for the ochratoxin-producingAspergillus carbonarius andAspergillus ochraceus species. Int J Food Microbiol 104: 207–214PubMedCrossRefGoogle Scholar
  29. 29.
    Perrone G, Susca A, Stea G, Mulè G (2004) PCR assay for identification ofAspergillus carbonarius andAspergillus japonicus. Eur J Plant Pathol 110: 641–649CrossRefGoogle Scholar
  30. 30.
    Karolewiez A, Geisen R (2005) Cloning a part of the ochratoxin A biosynthetic gene cluster ofPenicillium noridicum and characterization of the ochratoxin polyketide synthase gene. Syst Appl Microbiol 28: 588–595PubMedCrossRefGoogle Scholar
  31. 31.
    Geisen R, Mayer Z, Karolewiez A, Färber P (2004) Development of a real-time PCR system for detection ofPenicillium nordicum and for monitoring ochratoxin A production in foods by targeting the ochratoxin polyketide synthase gene. Syst Appl Microbiol 27: 501–507PubMedCrossRefGoogle Scholar
  32. 32.
    Geisen R (2004) Molecular monitoring of environmental conditions influencing the induction of ochratoxin A biosynthesis genes inPenicillium nordicum. Mol Nutr Food Res 48: 532–540PubMedCrossRefGoogle Scholar
  33. 33.
    Bogs C, Battilani P, Geisen R (2005) Development of a molecular detection and differentiation system for ochratoxin A producingPenicillium species and its application to analyse the occurrence ofP. nordicum in fermented meats. Int J Food Microbiol (in press, doi:10.1016/j.jifoodmicro.2005.08.010)Google Scholar
  34. 34.
    Dao HP, Mathieu F, Lebrihi A (2005) Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 104: 61–67PubMedCrossRefGoogle Scholar
  35. 35.
    King AD, Hocking AD, Pitt JI (1979) Dichloran-rose bengal medium for enumeration of molds from foods. Appl Environ Microb 37: 959–964Google Scholar
  36. 36.
    Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl Environ Microb 39: 488–492.Google Scholar
  37. 37.
    Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R (1996) Detection of aflatoxinogenic molds in grains by PCR. Appl Environ Microb 62: 3270–3273Google Scholar
  38. 38.
    Geisen R (1996) A multiplex PCR reaction for the detection of aflatoxin and sterigmatocystin producing fungi. Systematic and Applied Microbiology 19: 388–392Google Scholar
  39. 39.
    Niessen L, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producingFusarium species in pure cultures and cereal samples. Syst Appl Microbiol 21: 618–631PubMedGoogle Scholar
  40. 40.
    Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P (2001) Quantification of tricho-thecene-producingFusarium species in harvested grain by competitive PCR to determine efficacies of fungicides againstFusarium head blight of winter wheat. Appl Environ Microb 67: 1575–1580CrossRefGoogle Scholar
  41. 41.
    Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes ofGibberella zeae by using PCR. Appl Environ Microb 67: 2966–2972CrossRefGoogle Scholar
  42. 42.
    Bluhm BH, Flaherty JE, Cousin MA, Woloshuk CP. (2002) Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species ofFusarium in cornmeal. J Food Protect 65: 1955–1961Google Scholar
  43. 43.
    González-Jaén MT, Mirete S, Patino B, López-Errasquín E, Vázquez C (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains ofFusarium verticillioides. Eur J Plant Pathol 110: 525–532CrossRefGoogle Scholar
  44. 44.
    Boichenko LV, Boichenko DM, Vinokurova NG, Reshetilova TA, Arinbasarov MU (2001) Use of polymerase chain reaction for searching for producers of ergot alkaloids from among microscopic fungi. Mikrobiologiia 70: 360–364PubMedGoogle Scholar
  45. 45.
    Paterson RRM, Archer S, Kozakiewiez Z, Lea A, Locke T, O'Grady E (2000) A gene probe for the patulin metabolic pathway with potential for use in patulin and novel disease control. Biocontrol Sci Techn 10: 509–512CrossRefGoogle Scholar

Copyright information

© Society of Mycotoxin Research and Springer 2006

Authors and Affiliations

  1. 1.Lehrstuhl für Technische MikrobiologieTechnische Universität MünchenFreisingGermany

Personalised recommendations