International Journal of Pancreatology

, Volume 8, Issue 4, pp 305–321 | Cite as

Lung injury in acute experimental pancreatitis in rats

I. Morphological Studies
  • S. Willemer
  • C. O. Feddersen
  • W. Karges
  • G. Adler


The pathogenesis of pancreatitis-related pulmonary injury was studied at the light- and electronmicroscopic level. Experimental pancreatitis was induced in rats by infusion of supramaximal doses of cerulein for 12 h. Investigations were carried out 3, 6, and 12 h after the start of infusion and 12, 48, and 72 h after the end of pancreatitis induction. Initial manifestations of pancreatitis-associated lung injury revealed a pronounced clustering of polymorphonuclear leukocytes in pulmonary microvessels, followed by severe damage of alveolar endothelial cells. Consecutively, the increase in vascular permeability of the lung resulted in interstitial edema formation. Structural changes were maximal after 12 h and reversed completely after 84 h. In conclusion, the structural appearance of pulmonary injury in cerulein-induced pancreatitis was similar to that reported in early stages of the adult respiratory distress syndrome (ARDS). It is suggested that polymorphonuclear granulocytes play a crucial role in the pathogenesis of pancreatitis-related lung injury.

Key Words

Acute pancreatitis ARDS granulocytes ultrastructure mophometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Interiano Stuard ID,ano Stuard ID, and Hyde RW. Acute respiratory distress syndrome in pancreatitis. Ann. Int. Med. 1972; 77: 923–926.Google Scholar
  2. 2.
    Kellum JM, DeMeester TR, Elkim RC, and Zuidema GD. Respiratory insufficiency secondary to acute pancreatitis. Ann. Surg. 1972; 175: 657–662.PubMedCrossRefGoogle Scholar
  3. 3.
    Ranson JHC, Roses DF, and Fink SD. Early respiratory insufficiency in acute pancreatitis. Ann. Surg. 1973; 178: 75–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Ranson JHC, Turner JW, Roses DF, Rifkind KM, and Spencer FC. Respiratory complications in acute pancreatitis. Ann. Surg. 1974; 179: 557–565.PubMedGoogle Scholar
  5. 5.
    Warshaw AL, Lesser PB, Rie M, and Cullen DJ. The pathogenesis of pulmonary edema in acute pancreatitis. Ann. Surg. 1975; 182: 505–509.PubMedGoogle Scholar
  6. 6.
    Talvik R, Liigant A, Sissak HM, and O’Kounel-Bronina N. Respiratory failure in acute pancreatitis. Intensive Care Med. 1977; 3: 97, 98.PubMedCrossRefGoogle Scholar
  7. 7.
    Renner IG, Savage WT, Pantoja JL, and Renner VJ. Death due to acute pancreatitis. A retrospective analysis of 405 autopsy cases. Dig. Dis. Sci. 1985; 30: 1005–1018.PubMedCrossRefGoogle Scholar
  8. 8.
    Robertson CS, Basran GS, and Hardy JG. Lung vascular permeability in patients with acute pancreatitis. Pancreas 1988; 3: 162–165.PubMedCrossRefGoogle Scholar
  9. 9.
    Schlag G, Voigt, WH, Schnells G, Glatzl A. Die Ultrastruktur der menschlichen Lunge im Schock. Anaesthesist 1976; 25: 512–521.PubMedGoogle Scholar
  10. 10.
    Bachofen M and Weibel ER. Alteration of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Res. Dis. 1977; 116: 589–615.Google Scholar
  11. 11.
    Mittermayer Ch, Riede UN, Bleyl U, Herzog H, v Wichert P, and Riesner K. Schocklunge. Verh. Dtsch. Ges. Path. 1978; 62: 11–65.Google Scholar
  12. 12.
    Riede UN, Joachim H, Hassenstein J, Costabel U, Sandritter W, Augustin P, and Mitter mayer Ch. The pulmonary air-blood barrier of human shock lungs (a clinical, ultrastructural and morphometric study). Path. Res. Pract. 1978; 163: 41–72.Google Scholar
  13. 13.
    Schlag G and Redl H. The morphology of the adult respiratory distress syndrome. Shock and the Adult Respiratory Distresss Syndrome, Kox W and Bihari D, eds., Springer, Berlin-Heidelberg-New York, 1988; 21–32.Google Scholar
  14. 14.
    Lankisch PG, Rahlf G, and Koop H. Pulmonary complications in fatal acute hemorrhagic pancreatitis. Dig. Dis. Sci. 1983; 28: 111–116.CrossRefGoogle Scholar
  15. 15.
    Stömmer P. LungenSchäden durch akute tryptische Pankreatitis. Dtsch. Med. Wochenschr. 1984; 109: 454–460.PubMedCrossRefGoogle Scholar
  16. 16.
    Stömmer P. Pankreaserkrankugen und andere Organe. Verh. Dtsch. Ges. Pathol. 1987; 71: 68–76.PubMedGoogle Scholar
  17. 17.
    Lungarella G, Gardi C, DeSanti MM, and Luzi P. Pulmonary vascular injury in pancreatitis. Evidence for a major role played by pancreatic elastase. Exp. Mol. Pathol. 1985; 42: 44–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Stömmer P and Becker U. Pankreatitis-insduzierte Lungenschäden: Tierexperimentelle Befunde. Verh. Dtsch. Ges. Pathol. 1986; 70: 406.Google Scholar
  19. 19.
    Guice KS, Oldham KT, Johnson KJ, Kunkel RG, Morganroth ML, and Ward PA. Pancreatitis-induced acute lung injury. An ARDS model. Ann. Surg. 1988; 208: 71–77.Google Scholar
  20. 20.
    Toung T, Najeow YK, Kimura T, and Cameron JC. Lung mechanics in experimental pancreatitis. Anesthesiology 1979; 51: 376.CrossRefGoogle Scholar
  21. 21.
    Lee Malik AB, Barie PS, and Minnear FC. Effect of acute pancreatitis on pulmonary transvascular fluid and protein exchange. Am. Rev. Res. Dis. 1981; 123: 618–621.Google Scholar
  22. 22.
    Tahamont MV, Barie PS, Blumenstock FA, Hussain MH, and Malik AB. Increased lung vascular permeability after pancreatitis and trypsin infusion. Am. J. Pathol. 1982; 109: 15–26.PubMedGoogle Scholar
  23. 23.
    Feddersen CO, Willemer S, Karges W, Püchner A, Adler G, and Wiehert PV. Lung injury in acute experimental pancreatitis in rats. Functional studies. Int. J. Pancreatol. 1991; 8(4): 323–331.PubMedGoogle Scholar
  24. 24.
    Weibel ER. Stereological Methods, vol 1, Practical Methods for Biological Morphometry, Academic, London-New York-Toronto-Sydney-San Francisco, 1979.Google Scholar
  25. 25.
    Oberholzer M. Morphometrie in der klinischen Pathologie. Allgemeine Grundlagen. Springer, Berlin-Heidelberg, New York, 1983.Google Scholar
  26. 26.
    Lampel M and Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch. [A] 1977; 373: 97–117.CrossRefGoogle Scholar
  27. 27.
    Adler G, Hupp T, and Kern HF. Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch. [A] 1979; 382: 31–47.CrossRefGoogle Scholar
  28. 28.
    Adler G, Rohr G, and Kern HF. Alteration in membrane fusion as a cause of acute pancreatitis in the rat. Dig. Dis. Sci. 1982; 27: 993–1002.PubMedCrossRefGoogle Scholar
  29. 29.
    Watanabe Baccino FM, Steer ML, and Meldolesi J.Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am. J. Physiol. 1984; 246: G457-G467.PubMedGoogle Scholar
  30. 30.
    Willemers S, ElsäSSer HPS Kern HF, and Adler G. Tubular complexes in cerulein- and oleic acid-induced pancreatitis in rats. Glycoconjugate pattern, immunocytochemical, and ultrastructural findings. Pancreas 1987; 2: 669–675.CrossRefGoogle Scholar
  31. 31.
    Adler G, Kern HF, and Scheele GA. Experimental models and concepts in acute pancreatitis. The Exocrine Pancreas: Biology, Pathobiology and Diseases. Go VLW, Gardner JO, Brooks FP, Lebenthal E, DiMagno EP, and Scheele GA. eds. Raven, New York, 1986; 407–421.Google Scholar
  32. 32.
    Elsässer HP, Adler G, and Kern HF. Time course and cellular source of pancreatic regeneration following acute pancreatitis in the rat. Pancreas 1986; 1: 421–429.PubMedCrossRefGoogle Scholar
  33. 33.
    Kazmierowski JA, Gallin JI, and Reynold HY. Mechanism for the inflammatory response in primate lungs: demonstration and partial characterization of an alveolar macrophage derived chemotactic factor with preferential activity for poiymorphonuclear leukocytes. J. Clin. Invest. 1978; 59: 273–281.CrossRefGoogle Scholar
  34. 34.
    Havada RN, Bowman CM, Fox RB, and Repine JE. Alveolar macrophagesecretion: initiators of inflammation in pulmonary oxygen toxicity. Chest 1982; 81: 525–535.Google Scholar
  35. 35.
    Craddock PR, Fehr J, Dalmasso AP, Brigham KL, and Jacob HS. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyser cellopane membranes. J. Clin. Invest. 1977; 59: 879–888.PubMedCrossRefGoogle Scholar
  36. 36.
    Jacob HS, Craddock PR, Hammerschmidt DE, and Muldow CF. Complement induced granulocyte aggregation. N. Engl. J. Med. 1980; 302: 789–793.PubMedGoogle Scholar
  37. 37.
    Seelig R and Seelig HP. Complement-mediated acinar cell necrosis in pancreatiti, induced by basement membrane antibodies. Virchow, Arch. [A] 1976; 371: 69–11.CrossRefGoogle Scholar
  38. 38.
    Goldstein IM, Cala D, Radin A, Kaplan HB, Horn J, and Ranson J. Evidence of complement catabolism in acute pancreatitis. Am. J. Med. Sci. 1978; 275: 257–264.PubMedCrossRefGoogle Scholar
  39. 39.
    Seelig R, Lankisch PG, Koop H, Winckler K, Kaboth U, and Seelig HP. Complement system insodium taurocholate pancreatiti, in the rat. Res. Exp. Med. (Ber) 1978; 174: 57–65.CrossRefGoogle Scholar
  40. 40.
    Horn JK, Ranson JHC, Goldstein IM, Weissler J, Curatola D, Taylor R, and Perez HD. Evidence of complement catabolism in experimental acute pancreatitis. Am. J. Pathol.. 1980; 101: 205–216.PubMedGoogle Scholar
  41. 41.
    Ratliff NB, Wilson JW, Mikat E, Hackel DB, and Graham TC. The lung in hemorrhagic shock. IV. The role of neutrophilic poiymorphonuclear leukocytes. Am. J. Pathol.. 1971; 65: 325–332.PubMedGoogle Scholar
  42. 42.
    Henson PM. Pathologic mechanisms in neutrophil-mediated injury. Am. J. Pathol. 1972; 68: 593–606.PubMedGoogle Scholar
  43. 43.
    Sacks T, Moldow CF, Craddock PR, Bowers TK, and Jacob HS. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J. Clin. Invest. 1978; 59: 1161–1167.CrossRefGoogle Scholar
  44. 44.
    Johnson KJ, Fantone JC, Kaplan J, and Ward PA. In vivo damage of rat lung, by oxygen metabolites. J. Clin. Invest. 1981; 67: 983–993.PubMedCrossRefGoogle Scholar
  45. 45.
    Shasby DM, Vanbenthuysen KM, Tate RM, Shasby SS, McMurtry I, and Repine JE. Granulocytes mediate acute edematous lung injury in rabbits and in isolated rabbit lung, perfused with phorbol myristate acetate: role of oxygen radicals. Am. Rev. Respir. Dis. 1982; 125: 443–447.PubMedGoogle Scholar
  46. 46.
    Tate RM, Vanbenthuysen KM, Shasby DM, McMurtry IF, and Repine JE. Oxygenradical-mediated permeability edema and vasoconxstriction in isolated perfused rabbit lungs. Am. Rev. Respir. Dis. 1982; 126: 802–806.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • S. Willemer
    • 1
  • C. O. Feddersen
    • 1
  • W. Karges
    • 1
  • G. Adler
    • 1
  1. 1.Department of Internal MedicinePhilipps-University MarburgMarburgFRG

Personalised recommendations