On an explicit formula for Whittaker-Shintani functions on Sp2

  • A. Murase


Explicit Formula Irreducible Character Jacobi Form Whittaker Function Siegel Modular Form 


  1. [1]
    N. Bourbaki, Groupes et algèbre de Lie, Diffusion C.C.L.S., Paris.Google Scholar
  2. [2]
    D. Bump, The Rankin-Selberg Method: A Survey, In Number Theory, Trace Formulas and Discrete Groups, Symposium in Honor of Alte Selberg, Academic Press 1989.Google Scholar
  3. [3]
    D. Bump, S. Friedberg andJ. Hoffstein,p-adic Whittaker functions on the Metaplectic Group, preprint.Google Scholar
  4. [4]
    W. Casselmann andJ. Shalika, The Unramified Principal Series ofp-adic Groups II: The Whittaker Function, Compositio Math.41 (1980), 207–231.MathSciNetGoogle Scholar
  5. [5]
    S. Kato, On an Explicit Formula for Class-1 Whittaker Functions on Split Reductive Groups onp-adic Fields, preprint 1978.Google Scholar
  6. [6]
    A. Murase,L-functions Attached to Jacobi Forms of Degreen, Part I: The Basic Identity, J. reine und ang. Math.401 (1989), 122–156.MATHMathSciNetGoogle Scholar
  7. [7]
    A. Murase andT. Sugano, Whittaker-Shintani Functions on the Symplectic Group of Fourier-Jacobi Type, to appear in Compositio Math.Google Scholar
  8. [8]
    I. Satake, Theory of Spherical Functions on Reductive Algebraic Groups Overp-adic Fields, I.H.E.S. Publ. Math.18 (1963), 5–69.MathSciNetGoogle Scholar
  9. [9]
    T. Shintani, On an Explicit Formula for Class-1 ‘Whittaker Functions’ on GLn Overp-adic Fields, Proc. Japan Acad.52 (1976), 180–182.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Mathematische Seminar 1991

Authors and Affiliations

  • A. Murase
    • 1
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Bundesrepublik Deutschland
  2. 2.Department of MathematicsKyoto Sangyo UniversityKyotoJapan

Personalised recommendations