On an explicit formula for Whittaker-Shintani functions on Sp2

  • A. Murase


Explicit Formula Irreducible Character Jacobi Form Whittaker Function Siegel Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    N. Bourbaki, Groupes et algèbre de Lie, Diffusion C.C.L.S., Paris.Google Scholar
  2. [2]
    D. Bump, The Rankin-Selberg Method: A Survey, In Number Theory, Trace Formulas and Discrete Groups, Symposium in Honor of Alte Selberg, Academic Press 1989.Google Scholar
  3. [3]
    D. Bump, S. Friedberg andJ. Hoffstein,p-adic Whittaker functions on the Metaplectic Group, preprint.Google Scholar
  4. [4]
    W. Casselmann andJ. Shalika, The Unramified Principal Series ofp-adic Groups II: The Whittaker Function, Compositio Math.41 (1980), 207–231.MathSciNetGoogle Scholar
  5. [5]
    S. Kato, On an Explicit Formula for Class-1 Whittaker Functions on Split Reductive Groups onp-adic Fields, preprint 1978.Google Scholar
  6. [6]
    A. Murase,L-functions Attached to Jacobi Forms of Degreen, Part I: The Basic Identity, J. reine und ang. Math.401 (1989), 122–156.MATHMathSciNetGoogle Scholar
  7. [7]
    A. Murase andT. Sugano, Whittaker-Shintani Functions on the Symplectic Group of Fourier-Jacobi Type, to appear in Compositio Math.Google Scholar
  8. [8]
    I. Satake, Theory of Spherical Functions on Reductive Algebraic Groups Overp-adic Fields, I.H.E.S. Publ. Math.18 (1963), 5–69.MathSciNetGoogle Scholar
  9. [9]
    T. Shintani, On an Explicit Formula for Class-1 ‘Whittaker Functions’ on GLn Overp-adic Fields, Proc. Japan Acad.52 (1976), 180–182.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Mathematische Seminar 1991

Authors and Affiliations

  • A. Murase
    • 1
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Bundesrepublik Deutschland
  2. 2.Department of MathematicsKyoto Sangyo UniversityKyotoJapan

Personalised recommendations