Contour matching using wavelet transform and multigrid methods

  • Jiang Tianzi 
  • Ma Songde 
Regular Papers


In this paper, wavelet transform and multigrid method are combined to make the method more practical. It is known that Gaussian filtering causesshrinkage of data. To overcome this disadvantage, Gaussian filtering is replaced with wavelet transform. This method introduces no curve shrinkage. Then, the linearized form of objective equation is proposed. This makes contour matching easier to implement. Finally, the multigrid method is used to speed up the convergence.


Contour matching curvature wavelet transform multigrid method 


  1. [1]
    Yuille A L, Poggio T. Scaling theorem for zero crossing.IEEE Trans. Pattern Anal. Machine Intell. 1986, PAMI-8(1): 15–25.MATHGoogle Scholar
  2. [2]
    Mokhtarian F, Mackworth A. Scale-based description and recognition of planar curves and two-dimension shapes.IEEE Trans. Pattern Anal. Machine Intell., 1986, PAMI-8(1): 34–43.Google Scholar
  3. [3]
    Witkins A. A ‘Scale-space filtering’. InProc. 7th Int’l Joit Conf. Artif. Intell., Kalsruhe, Germany, 1983.Google Scholar
  4. [4]
    Yang X, DeMuynck P, Nyssen Eet al. A multiscale finite difference method for contour matching. InThe Third Int’l Conf. Automation, Robotics and Computer Vision (ICARCV’94), Singapore, 1994, pp. 2010–2014.Google Scholar
  5. [5]
    Daubechies I. Ten lectures on wavelets.CBMS-NSF Series in Appl. Math., SIAM, Philadelphia, 1991.Google Scholar
  6. [6]
    Oliensis J. Local reproducible smoothing without shrinkage.IEEE Trans. Pattern Anal. Machine Intell., 1993, PAMI-15(3): 307–312.CrossRefGoogle Scholar
  7. [7]
    George A, Liu JWH. Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, NJ: Prentice-Hall, 1981.MATHGoogle Scholar
  8. [8]
    Terzopoulos D. Image analysis using multigrid relaxation methods.IEEE Trans. Pattern Anal. Machine Intell., 1986, PAMI-8(2): 129–139.CrossRefGoogle Scholar
  9. [9]
    Hackbusch W. Multigrid Methods and Applications. Springer-Verlag, Berlin, 1985.Google Scholar
  10. [10]
    Ueda N, Satoshi S. Learning visual models from shape contours using multiscale convex/concave structure matching.IEEE Trans. Pattern Anal. Machine Intell., 1993, PAMI15(4): 337–352.CrossRefGoogle Scholar
  11. [11]
    Wolfson HJ. On curve matching.IEEE Trans. Pattern Anal. Machine Intell., 1991, PAMI12(5): 483–489.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 1997

Authors and Affiliations

  1. 1.School of MathematicsThe University of New South WalesSydneyAustralia
  2. 2.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijing

Personalised recommendations