Advertisement

Microgravity - Science and Technology

, Volume 16, Issue 1–4, pp 11–14 | Cite as

Surface tension and viscosity of industrial alloys from parabolic flight experiments — Results of theThermoLab project

  • Ragnhild Aune
  • Livio Battezzati
  • Rob Brooks
  • Ivan Egry
  • Hans-Jörg Fecht
  • Jean-Paul Garandet
  • Ken C. Mills
  • Alberto Passerone
  • Peter N. Quested
  • Enrica Ricci
  • Stephan Schneider
  • Seshadri Seetharaman
  • Rainer K. Wunderlich
  • Bernard Vinet
Article

Abstract

The surface tension and the viscosity of a series of industrial alloys have been measured by the oscillating drop technique with an electromagnetic levitation device under reduced gravity conditions in several parabolic flights. It was demonstrated that the 20 seconds of reduced gravity available in a parabola were sufficient for melting, heating into the liquid phase, and cooling to solidification of typically 7 mm diameter metallic specimen. The surface tension and the viscosity were obtained from the frequency and the damping time constant of the oscillation which were evaluated from the temperature signal of a highresolution pyrometer. Alloys processed included steels, Ni-based superalloys, and Ti-alloys which were supplied by industrial partners to the project. Three to four parabolas were sufficient to obtain the surface tension and the viscosity over a large range in temperature.

Keywords

Surface Tension Parabolic Flight Ti6Al4V Alloy Industrial Alloy Reduce Gravity Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dantzig, J. A.: Solidification Modeling: Status and Outlook, JOM, vol. 52, no. 12, p. 18 (2000).CrossRefGoogle Scholar
  2. [2]
    Saunders, N., in: Superalloys 1996. Kissenger, R. D. et al. (Eds.), TMS, Warrendale, Pennsylvania, p. 101 (1996).Google Scholar
  3. [3]
    Egry, I., Lohöfer, G., Jacobs, G.: Surface Tension of Liquid Metals: Results from Measurements on Ground and in Space, Phys. Rev. Letters, vol. 75, p. 4043 (1995).CrossRefGoogle Scholar
  4. [4]
    Wunderlich, R. K., Fecht, H.-J.: Thermophysical Properties of Bulk Metallic Glass Forming Alloys in the Stable and Undercooled Liquid — A Microgravity Investigation, J. Mat. Trans. JIM, vol. 42, no. 4, p. 565 (2001).CrossRefGoogle Scholar
  5. [5]
    Egry, I., Jacobs, G., Schwartz, E., Szekely, J.: Surface Tension Measurements of Metallic Melts under Micro-Gravity, Int. J. Thermophys., vol. 17, p. 1181 (1996).CrossRefGoogle Scholar
  6. [6]
    Rösner-Kuhn, M., Hofmeister, W. H., Kuppermann, G., Morton, C. W., Bayuzick, R. J., Frohberg, M. G., in: Solidification 1999. Hofmeister, W. H., Rogers, J. R., Marsh, S., Singh, N. B., Vorhees, P. W. (Eds.), TMS, Warrendale, Pennsylvania, p. 33 (1999).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ragnhild Aune
    • 1
  • Livio Battezzati
    • 2
  • Rob Brooks
    • 3
  • Ivan Egry
    • 4
  • Hans-Jörg Fecht
    • 5
  • Jean-Paul Garandet
    • 6
  • Ken C. Mills
    • 7
  • Alberto Passerone
    • 8
  • Peter N. Quested
    • 3
  • Enrica Ricci
    • 8
  • Stephan Schneider
    • 4
  • Seshadri Seetharaman
    • 1
  • Rainer K. Wunderlich
    • 5
  • Bernard Vinet
    • 6
  1. 1.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Università degli Studi di TorinoTorinoItaly
  3. 3.National Physical LaboratoryMaterials CentreTeddingtonUK
  4. 4.ZEUS (Zentrum für Erstarrung Unterkühlter Schmelzen) at DLRCologneGermany
  5. 5.Materials DivisionUniversity of UlmUlmGermany
  6. 6.Department of MaterialsImperial College STMLondonUK
  7. 7.IENI-CNR GeGenoaItaly
  8. 8.Département des Technologies pour les Engergies NouvellesCEA/DTENGrenobleFrance

Personalised recommendations