Advertisement

Sugar Tech

, Volume 3, Issue 1–2, pp 18–22 | Cite as

Broadening of genetic base in sugar crops

I. Genetic variability and diversity in induced haploids of sugarbeet
  • A. Svirshchevskaya
  • H. M. Srivastava
Article
  • 49 Downloads

Abstract

Gynogenetic haploid and double haploid (DH) lines produced earlier from six Monogerm and multigerm sugarbeet genotypes at Minsk, Belarus, were used in the present study with the objectives to study genetic variability of induced haploids and doubled haploid in sugarbeet populations, and to demonstrate genetic diversity of gynogenetic germplasm with help of molecular markers. Afterin vitro period of induction and micropropagation, plants of gynogenetic origin were characterized by low values of root yield and sugar content, due to mixoploid tissues. Prebreeding field trials of 40 genotypes (lines, their hybrids and controls) showed wide variability in double haploids for quantitative traits, with higher values for root weight, top weight and sugar yield/root in DH lines compared to haploids and their controls. Genetic diversity and variability among DH lines of different origin alongwith checks was studied through AFLP techniques. The phylogentic tree for 19 selected genotypes was constructed which gave interesting information and six lines were selected as base material for broadening of genetic base to produce experimental hybrids.

Keywords

Sugarbeet haploids DH lines gynogenetic lines AFLP DNA finger printing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard, F.C. (1979). Ausfuhrliche Beshreibung der Methode, nach welcher beider Kultur der Runkelsube verfahsen werfahren werden mulfb. C.S. Spencer, Berlin) pp 63.Google Scholar
  2. Cooke, D.A. and Scott, R.K. (1993). Introduction. The Sugarbeet Crop pp xiv-ix Chapman & Hall, UK.Google Scholar
  3. Bosemark, N.O. (1993). Genetics & Breeding pp 67–119. In the Sugarbeet Crop (Eds. D.A. Cook and R.K. Scott), Chapman & Hall.Google Scholar
  4. Bossotrot, D. and Hosemans, D. (1985). Gynogenesis inBeta vulgaris, L. fromin vitro culture of unpollinated ovules to the production of doubled haploid plants in soil. Plant Cell Reptr.,4: 300–303.CrossRefGoogle Scholar
  5. Fronoghi-wehr and Zeller, A. (1990).In vitro micropore reaction of different german wheat cultivars. Theor. Appl. Genet,79: 77–80.CrossRefGoogle Scholar
  6. Finnie, S.J, Powell, W. and Dyer, A.F. (1989). The effect of carbohydrate composition and concentration on anther culture response in barley (Hordeum vulgaris, L.) Plant Breeding,103: 110–118.CrossRefGoogle Scholar
  7. Goska, M. and Jassem, B. (1988). Histological observations of Sugarbeet ovulesIn-vitro Cultures. Bull. Pol. Acad. Sci. Biol. Sci.,36: 167–175.Google Scholar
  8. Hansen, A.L., Plaver, C., Pedersen, H.C., Keimer, H.C. and Anderson, S.B. (1994). Efficientin-vitro cromosome doubling duringBeta vulgaris, L. Chromosome doubling duringBeta vulgaris, L. ovule culture. Plant Breeding,112: 89–95.CrossRefGoogle Scholar
  9. Hansen, A.L., Gertz, A., Joersbo, M. and Anderson, S.B. (1995). Short duration colchiine treatment for in-vitro chromosome doubling during ovule culture ofBeta vulgaris, L.Plant Breeding,114: 515–519.CrossRefGoogle Scholar
  10. Hussey, G. and Hepher, A. (1978). Clonal propagation of sugar beet plants and the formation of polyploids by tissue culture. Annals of Bot.,42: 477–479.Google Scholar
  11. Lindsey, K. and Jones, M.G.K. (eds) (1989). Plant Biotechnology in Agriculture. Open University Press, Milton Keynes, UK.Google Scholar
  12. Mathias, R. and Robbelen, G. (1991). Effective diploidization of microspore-derived haploids of rape (Brassica napus, L.) byin-vitro cochincine treatment.Plant Breeding,106: 82–84.CrossRefGoogle Scholar
  13. Marggraf, A.S. (1779). Experiences chymiques faites dans le dessein de tirer un vere table sucre de diverses plantes, quis croissent dans nos coulrees. In Histoire de 1 Academie Royale des Sciences et Bells Lellres, Berlin: pp 79–90.Google Scholar
  14. McGrath, J.M., de Los Reyes B. and Saunders J.W. (2000). Beta Breeding and Genetics at East Lansing, Michigan: Molecular Methods, Genetic Diversity, and Trait Elucidation. J. of Sugar Beet Research (USA),37(4): 97–106.Google Scholar
  15. Morrison, R.A. and Evans, D.A. (1987). Gametoclonal variation. Plant breeding Reviews.5: 359–391.Google Scholar
  16. Nei, M. and W.H., Li (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat Acad. Sci. USA,76(10): 5269–5273.PubMedCrossRefGoogle Scholar
  17. Srivastava, H.M. (1994). Pre breeding of Sugarbeet in India. Jour of Sugarbeet Research (USA),32: 99–111.Google Scholar
  18. Srivastava, H.M. (1996). Genetic Diversity for High Temparature tolerance in diploid varieties of Sugarbeet. Proceedings of 4th InternationalBeta Genetic Resources Conference and WorldBeta Network meeting. A Report. International Crop Network Series No. 12, IPGRI (Rome) Eds: Frese, L, L. Panella H.M. Srivastava, W. Lange.Google Scholar
  19. Svirshchevskaya, A.M., Borzyak, V.S. and Pryadko, A.V. (1997). Characteristics of Productivity traits in gynogenetic sugar beet regenerants. Izvestiya Akad. Nauk Belarusi, Ser. biol. nauk,1: 44–48 (in Russian).Google Scholar
  20. Svirshchevskaya, A.M. and Borzyak V.S. (1998). Doubled haploids in sugar beet : spontaneous and colchicine-induced polypoidization.In : Current Topics in Plant Cytogenetics Related to Plant Improvement. Proc. Int. Symp., Wien Univ-Verl. p. 318–324.Google Scholar
  21. Svirshchevskaya, A. and Dolezel J. (2000). Production and Performance of Gynogenetic Sugarbeet lines. J. of Sugar Beet Research (USA),37(4): 117–133.Google Scholar
  22. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes Frijters, A., Pot, J., Pelentan, J., Kuiper, M.M. and Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research23(21) : 4407–4414.PubMedCrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 1999

Authors and Affiliations

  1. 1.Institute of Genetics and CytologyNational Academy of SciencesMinskBelarus
  2. 2.Division of Crop ImprovementIndian Institute of Sugarcane ResearchLucknow-226 002India

Personalised recommendations