algebra universalis

, Volume 2, Issue 1, pp 95–98 | Cite as

Primitive subsets of lattices

  • R. Wille


Lattice Variety Finite Subset Congruence Lattice Subdirect Product Modular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. A. Baker,Equational classes of modular lattices, Pacific J. Math.28 (1969), 9–15.MATHMathSciNetGoogle Scholar
  2. [2]
    B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121.MATHMathSciNetGoogle Scholar
  3. [3]
    R. McKenzie,Equational bases for lattices theories, Math. Scand.27 (1970), 24–38.MATHMathSciNetGoogle Scholar
  4. [4]
    R. McKenzie,Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc.Google Scholar
  5. [5]
    E. T. Schmidt,Kongruenzrelationen algebraischer Strukturen, Math. Forschungsber.25 (Berlin 1969).Google Scholar
  6. [6]
    R. Wille,Variety invariants for modular lattices, Canad. J. Math.21 (1969), 279–283.MATHMathSciNetGoogle Scholar
  7. [7]
    R. Wille,Primitive Länge und primitive Weite bei modularen Verbänden, Math. Zeitschr.108 (1969), 129–136.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1972

Authors and Affiliations

  • R. Wille

There are no affiliations available

Personalised recommendations