Advertisement

algebra universalis

, Volume 1, Issue 1, pp 7–12 | Cite as

On the composition of idempotent functions

  • Robert W. Quackenbush
Article

Keywords

Potent Function Induction Hypothesis Similar Reasoning Disjoint Subset Algebra UNIV 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Sierpiński,Sur les fonctions de plusieurs variables, Fund. Math.33, 169–173 (1945).MATHMathSciNetGoogle Scholar
  2. [2]
    G. Grätzer, J. Płonka, andA. Sekanina,On the Number of Polynomials of a Universal Algebra I, Colloq. Math., to appear.Google Scholar
  3. [3]
    G. Grätzer andJ. Płonka,On the Number of Polynomials of a Universal Algebra II, Colloq. Math., to appear.Google Scholar
  4. [4]
    G. Grätzer andJ. Płonka,On the Number of Polynomials of an Idempotent Algebra I, Pacific J. Math., to appear.Google Scholar
  5. [5]
    G. Grätzer andJ. Płonka,On the Number of Polynomials of an Idempotent Algebra II, to appear.Google Scholar

Copyright information

© Birkhäuser-Verlag 1971

Authors and Affiliations

  • Robert W. Quackenbush
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations