Journal of Computer Science and Technology

, Volume 19, Issue 2, pp 113–127 | Cite as

Web caching: A way to improve web QoS

Computer Network and Internet


As the Internet and World Wide Web grow at a fast pace, it is essential that the Web's performance should keep up with increased demand and expectations. Web Caching technology has been widely accepted as one of the effective approaches to alleviating Web traffic and increase the Web Quality of Service (QoS). This paper provides an up-to-date survey of the rapidly expanding Web Caching literature. It discusses the state-of-the-art web caching schemes and techniques, with emphasis on the recent developments in Web Caching technology such as the differentiated Web services, heterogenous caching network structures, and dynamic content caching.


Web traffic Web caching Web QoS differentiated service dynamic content caching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zari M, Saiedian H, Naeem M. Understanding and reducting Web delays.IEEE Computer Magazine, Dec. 2001, 34(12): 30–37.Google Scholar
  2. [2]
    Abrams M, Standridge C R, Abdulla G Williams S, Fox E A Limitations and potentials. InProc. the 4th International WWW Conference, 1995, pp. 119–133.Google Scholar
  3. [3]
    Aggarwal C, Wolf J L, Yu P S. Caching on the World Wide Web.IEEE Trans. Knowledge and Data Engineering, 1999, 11(1): 94–107.CrossRefGoogle Scholar
  4. [4]
    Davison B D. A Web caching primer.IEEE Internet Computing, July/Aug. 2001, 5(4): 38–45.CrossRefGoogle Scholar
  5. [5]
    Feldman A, Caceres R, Douglis F, Glass G, Rabinovich M. Performance of Web proxy caching in heterogeneous bandwidth environments. InProc. the IEEE Infocom'99 Conference, March 1999, pp. 107–116.Google Scholar
  6. [6]
    Rabinovich M, Spatscheck O. Web Caching and Replication. first Edition. Addison Wesley Publishing Co., New York, Dec. 2001.Google Scholar
  7. [7]
    Wang J. A survey of Web caching, schemes for the Internet.ACM Computer Communication Review, Oct. 1999, 29(5): 36–46.CrossRefGoogle Scholar
  8. [8]
    Moon S M. Increasing cache bandwidth using multiport caches for exploiting ILP in non-numerical code. InIEE Proc. Computers and Digital Techniques, Sept. 1997, 144(5): 295–303.Google Scholar
  9. [9]
    Thiebaut D, Stone H S, Wolf J L. Improving disk cache hit-ratios through cache partitioning.IEEE Trans. Computers, June 1992, 41(6): 665–676.CrossRefGoogle Scholar
  10. [10]
    Stiliadis D, Varma A. Selective victim caching: A method to improve the performance of direct-mapped caches.IEEE Trans. Computers, 1997, 46(5): 603–610.CrossRefGoogle Scholar
  11. [11]
    Kangasharju J, Kwon Y G, Ortega A. Design and implementation of a soft caching proxy.Journal of Computer Networks and ISDN Systems, 1998, (30): 2113–2121.CrossRefGoogle Scholar
  12. [12]
    Rabinovich M, Aggarwal A. RaDaR: A scalable architecture for a global Web hosting service. InProc. the 8th World Wide Web Conference, 1999, pp.467–483.Google Scholar
  13. [13]
    Rabinovich M, Rabinovich I, Rajaraman R, Aggarwal A. A dynamic object replication and migration protocol for an Internet hosting service. InProc. the 19th IEEE Int. Conf. Distributed Computing Systems, 1999, pp. 101–113.Google Scholar
  14. [14]
    Cooper I, Melve I, Tomlinson G. RFC 3040 Internet Web Replication and Caching Taxonomy, Jan. 2001.Google Scholar
  15. [15]
    Chankhunthod A, Danzig P B, Neerdaeis C M F S, Worrell K J. A hierarchical Internet object cache. InProc. the USENIX 1996 Annual Technical Conference, Jan. 1996, pp. 153–163.Google Scholar
  16. [16]
    Malpani R, Lorch J, Berger D. Making World Wide Web caching servers cooperate. In4th Int. WWW Conf., Dec. 1995, pp. 107–117.Google Scholar
  17. [17]
    Chankhunthod A, Danzig P B, Neerdaels C, Schwartatz M F, Worrell K J. A hierarchical Internet object cache. InProc. USENIX'96, January 1996, pp. 22–26.Google Scholar
  18. [18]
    Tewari R, Vin H, Dahlin M, Kay J S. Beyond hierarchies: Design considerations for distributed caching on the Internet. Technical Report TR98-04, Department of Computer Science, University of Texas at Austin, Feb. 1998.Google Scholar
  19. [19]
    Wessels D, Claffy K. Application of Internet cache protocol (ICP). Internet Draft : draft-wessels-icp-v2-appl-00, Internet Engineering Task Force, RFC 2187, 1997.Google Scholar
  20. [20]
    Michel S, Nguyen K, Rosenstein A, Zhang L. Adaptive Web caching: Towards a new caching architecture. In3rd Int. Caching Workshop, June 1998, pp. 2041–2046.Google Scholar
  21. [21]
    Povey D, Harrison J. A distributed Internet cache. InProc. the 20th Australian Computer Science Conference, Sydney, Australia, Feb. 1997, pp. 175–184.Google Scholar
  22. [22]
    Rodriguez P, Spanner C, Biersack E W. Web caching architectures: Hierarchical and distributed caching. In4th International Caching Workshop, 1999, pp. 37–48.Google Scholar
  23. [23]
    Fan L, Cao P, Almeida J, Broder A Z. Summary cache: A scalable wide-area Web caching sharing protocol.ACM/IEEE Trans. Networking, 2000, 8(3): 281–293.CrossRefGoogle Scholar
  24. [24]
    Wang Z. Cachemesh: A distributed cache system for World Wide Web.97's Web Cache Workshop, 1997.Google Scholar
  25. [25]
    Karger D, Lehman E, Leighton T, Levine M, Lewin D, Panigraphy R. Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web. InProc. the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 654–663.Google Scholar
  26. [26]
    Ross K W. Hash-routing for collections for shared Web caches.IEEE Network, Nov./Dec. 1997, 11(6): 37–44.CrossRefGoogle Scholar
  27. [27]
    Wu K L, Yu P S. Latency-sensitive hashing for collaborative Web caching.Computer Networks, 2000, 33: 633–644.CrossRefGoogle Scholar
  28. [28]
    Rabinovich M, Chasse J, Gadde S. Not all hits are created equal: Cooperative proxy caching over a wide-area network.Computer Networks and ISDN Systems, Nov. 1998, 30(22–23): 2253–2259.CrossRefGoogle Scholar
  29. [29]
    Tsui K C, Liu J, Liu H L. Autonomy oriented load balancing in proxy cache servers. InFirst Asia-Pacific Conference on Web Intelligence: Research and Development, 2001, pp. 115–124.Google Scholar
  30. [30]
    Wang F Y, Liu M K, Zeng D J. ISAAC: Intelligent strategies and architectures for adaptive caching. InTechnical Report 01-0402, PARCS Lab, The University of Arizona, 2002.Google Scholar
  31. [31]
    Casilari E, Lecuona A R, Gonalez F J, Estrella A Det al. Characterization of Web traffic. InProc. the 2001 IEEE Global Telecommunications Conference, 2001, 3: 1862–1866.Google Scholar
  32. [32]
    Abdulla G. Analysis and modeling of World Wide Web traffic [Dissertation]. Virginia Polytechnic Institute and State University, May 1998.Google Scholar
  33. [33]
    Barford P, Bestarvros A, Bradley A, Crovella M. Changes in Web client access patterns: Characteristics and caching implications.World Wide Web Journal, Special Issue on Characterization and Performance Evaluation, 1999, 2(1): 15–28.Google Scholar
  34. [34]
    Breslau L, Cao P, Fan L, Phillips G, Shenker S. Web caching and Zipf-like distributions: Evidence and implications.IEEE INFOCOM 1999, 1999, 1: 127–134.Google Scholar
  35. [35]
    Chen X, Mohaptra P. Lifetime behavior and its impact on Web caching. InIEEE Workshop on Internet Application, 1999, pp. 54–61.Google Scholar
  36. [36]
    Swaminathan N, Raghavan S V. Intelligent prefetch in WWW using client behavior characterization. InProc. 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000.Google Scholar
  37. [37]
    Cunha C R. Trace analysis and its applications to performance enhancements of distributed information systems [Dissertation]. Boston University, 1997.Google Scholar
  38. [38]
    Leland W E, Taqqu M S, Willinger W, Wilson D V. On the self-similar nature of Ethernet traffic (extended version).IEEE/ACM Transactions on Networking, 1994, 2: 1–15.CrossRefGoogle Scholar
  39. [39]
    Dilley J. The effect of consistency on cache response time. Technical Report HPL-1999-107, Hewlett-Packard Labs, 1999.Google Scholar
  40. [40]
    Douglis F, Feldmann A, Krishnamurthy B. Rate of change and other metrics: A live study of the World Wide Web. InProc. the USENIX Symposium on Internet Technologies and Systems, 1997, pp. 147–158.Google Scholar
  41. [41]
    Eden A N, Joh B W, Mudge T. Web latency reduction via client-side prefetching. InProc. 2000 IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS-2000), April 2000, pp. 193–200.Google Scholar
  42. [42]
    Jiang Z, Kleinrock L. An adaptive network prefetch scheme.IEEE Journal of Selected Areas in Communications, April 1998, 6(3): 358–368.CrossRefGoogle Scholar
  43. [43]
    Kroeger T M, Long D D E, Mogul J C. Exploring the bounds of Web latency reduction from caching and prefetching. InProc. USENIX, Symposium on Internet Technology and Systems, Dec. 1997, pp. 13–22.Google Scholar
  44. [44]
    Markatos E P, Chronaki C E. A top-10 approach to prefetching on the Web. InProc. the INET 98 Conference, 1998.Google Scholar
  45. [45]
    Wang L. A study of measurement-based Web prefetch control.Presentation at CCECE2000 Halifax, May 7–10, 2000.Google Scholar
  46. [46]
    Fan L, Cao P, Lin W, Jacobson Q. Web prefetching between low-bandwidth clients and proxies: Potential and performance. InProc. the Joint International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS'99), May 1999, pp. 178–187.Google Scholar
  47. [47]
    Jiang Z, Kleinrock L. Prefetching links on the WWW. InProc. the IEEE Int. Conf. Communications (ICC'97), Montreal, Canada, June 1997, pp. 483–489.Google Scholar
  48. [48]
    Li J Q, Wang F Y. Consistency and prefetching for effective Web caching: An qualitative analysis.Technical Report 04-1201, PARCS Lab, the Univ. Arizona, 2001.Google Scholar
  49. [49]
    Yu S, Kobayashi H. A New Prefetch Cache Scheme. InProc. 2000 IEEE Global Telecommunications Conference (GLOBECOM'00), 2000, 1: 350–355.Google Scholar
  50. [50]
    Nanopoulos A, Katsaros D, Manolopoulos Y. Effective prediction of Web-user accesses: A data mining approach. In:Proc. the Workshop WEBKDD 2001, 2001.Google Scholar
  51. [51]
    Mobasher B, Jain N, Han E, Srivastava J. Web mining: Pattern discovery from World Wide Web transactions.Technical Report TR-96050, Department of Computer Science, University of Minnesota, 1996.Google Scholar
  52. [52]
    Pal S K, Talwar V, Mitra P. Web mining in soft computing framework: Relevance, state of the art and future directions.IEEE Trans. Neural Networks, 2002, 13(5): 1163–1177.CrossRefGoogle Scholar
  53. [53]
    Yang Q, Zhang Z. Model based predictive prefetching. InProc. 12th International Workshop on Database and Expert Systems Applications, 2001.Google Scholar
  54. [54]
    Cheng K, Kambayashi Y. LRU-SP: A size-adjusted and popularity-aware LRU replacement algorithm for Web caching. InProc. 24th Annual International Computer Software and Applications Conference, 2000, pp. 48–53.Google Scholar
  55. [55]
    O'Neil E J, O'Neil P E, Weikum G. The LRU-k page replacement algorithm for database disk buffering. InProc. ACM SIGMOD International Conference on Management of Data, New York, 1993, pp. 297–306.Google Scholar
  56. [56]
    Kim K, Park D. Least popularity-per-byte replacement algorithm for a proxy cache. InProc. 8th International Conference on Parallel and Distributed Systems, 2001, pp. 780–787.Google Scholar
  57. [57]
    Robinson J T, Devarkonda M V. Data cache management using frequency-based replacement.Performance Evaluation Review, May 1990, 18(1): 134–142.CrossRefGoogle Scholar
  58. [58]
    Williams S, Abrams M, Standridge C Ret al. Removal policies in network caches for World Wide Web documents. InProc. SIGCOMM'96, 1996.Google Scholar
  59. [59]
    Michel B S, Nikoloudakis K, Reiher P, Zhang L. URL forwarding and compression in adaptive Web caching. InProc. IEEE INFOCOM 2000, Mar. 2000, 2: 670–678.Google Scholar
  60. [60]
    Hosseini-Khayat S. On optimal replacement of, nonuniform cache objects.IEEE Trans. Computers, August 2000, 49(8): 769–778.CrossRefGoogle Scholar
  61. [61]
    Jin S, Bestavros A. Popularity-aware greedy dual-size Web caching algorithms.Technical Report TR-99/09, Computer Science Department, Boston University, 1999.Google Scholar
  62. [62]
    Zeng D J, Wang F Y, Fang B. Multiple-queues: An adaptive document replacement policy in Web caching.Technical Report 03-0402, PARCS Lab, the University of Arizona, 2002.Google Scholar
  63. [63]
    Cao P, Irani S. Cost-aware WWW proxy caching algorithms. InProc. the 1997 USENIX Symp. Internet Technology and Systems, Dec. 1997, pp.193–206.Google Scholar
  64. [64]
    Mahanti A, Williamson C, Eager D. Traffic analysis of a Web proxy caching hierarchy.IEEE Network May/June 2000, 14(3): 16–23.CrossRefGoogle Scholar
  65. [65]
    Che H, Wang Z, Tung Y. Analysis and design of hierarchical Web caching systems. InProc. IEEE INFOCOM'2001, Anchorage, Alaska, April 2001, pp.1416–1424.Google Scholar
  66. [66]
    Weikle D, McKee S, Wulf W. Caches as filters: A new approach to cache analysis. InProc. MASCOTS'98, Montreal, PQ, July 1998, pp.2–12.Google Scholar
  67. [67]
    Busari M, Williamson C. Simulation evaluation of a heterogeneous Web proxy caching hierarchy. In9th Int. Symp. Modeling, Analysis and Simulation of Computer and Telecommunication System, 2001, pp.379–388.Google Scholar
  68. [68]
    Gwertzman J, Seltzer M. World Wide Web cache consistency. InProc. the USENIX 1996 Annual Technical Conference, Jan, 1996, pp.141–152.Google Scholar
  69. [69]
    Howard J, Kazar M, Menees S, Nichols D, Satyanarayanan M, Sidebotham R, West M. Scale and performance in a distributed file system.ACM Trans. Computer Systems, Feb. 1998, 6(1): 51–81.CrossRefGoogle Scholar
  70. [70]
    Krishnamurthy B, Wills C E. Piggyback server invalidation for proxy cache coherency. InProc. the WWW-7 Conference, 1998, pp.185–194.Google Scholar
  71. [71]
    Yin J, Alvisi L, Dahlin M, Lin C. Volume leases for consistency in large-scale systems.IEEE Trans. Knowledge Data Engineering, July 1999, 11(4): 563–576.CrossRefGoogle Scholar
  72. [72]
    Cao P, Liu O. Maintaining strong cache consistency in the World Wide Web.IEEE Trans. Computers. April 1998, 47(4): 445–457.CrossRefMathSciNetGoogle Scholar
  73. [73]
    Krishnamurthy B. Wills C E. Study of piggyback cache validation for proxy caches in the World Wide Web. InProc. the 1997 USENIX Symposium Internet Technology and Systems, Dec. 1997, pp.1–12.Google Scholar
  74. [74]
    Gray C, Cheriton D. Leases: An efficient fault-tolerant mechanism for distributed file cache consistency. InProc. 12th ACM Symposium Operating System Principles, 1989, pp.202–210.Google Scholar
  75. [75]
    Duvvuri V, Shenoy P, Tewari R. Adaptive leases: A strong consistency mechanism for the World Wide Web. In19th. Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2000, 2000, 2: 834–843.Google Scholar
  76. [76]
    Krishman P, Raz D, Shavitt Y. Transparent, en-route cache location for regular networks. InDIMACS Workshop on Robust Communication Networks: Interconnection and Survivability, DIMACS Book series, New Brunswick, NJ, USA, Nov. 1998.Google Scholar
  77. [77]
    Valloppillil V, Ross K W. Cache Array Routing Protocol V1.0. Internet Draft: draft-vinod-carp-v1-03.txt, June 1997.Google Scholar
  78. [78]
    Almeida J, Cao P. Measuring proxy performance with the Wisconsin proxy benchmark.Journal of Computer Networks and ISDN Systems, 1998, 30: 2179–2192.CrossRefGoogle Scholar
  79. [79]
    Chen Y. Experimental study of Internet traffic modeling and bandwidth allocation.2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2001, 2, 587–590Google Scholar
  80. [80]
    Lai G, Liu M K, Wang F Y, Zeng D J. Web Caching: Architectures and Performance Evaluation Survey.2001 IEEE International Conference on Systems, Man, and Cybernetics 2001, 5: 3039–3044.Google Scholar
  81. [81]
    Maltzahn C, Richarson K J. Performance issues of enterprise level Web proxies. InProc. the ACM SIGMETRICS Int. Conference, June 1997, pp.13–23.Google Scholar
  82. [82]
    Lu Y, Saxena A, Abdelzaher T F. Differentiated caching services: A control-theoretical approach.IEEE 21st International Conference on Distributed Computing Systems, 2001, pp.615–622.Google Scholar
  83. [83]
    Cao P, Zhang J, Beach K. Active cache: Caching dynamic contents on the Web. InProc. IFIP Int. Conf. Distributed Systems Platforms and Open Distributed Processing (Middleware'98) 1998, pp.373–388.Google Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 2004

Authors and Affiliations

  • Ming-Kuan Liu
    • 1
    • 2
  • Fei-Yue Wang
    • 1
    • 2
  • Daniel Dajun Zeng
    • 1
    • 3
  1. 1.The Lab for Complex Systems and Intelligent Sciences, Institute of AutomationThe Chinese Academy of SciencesBeijingP.R. China
  2. 2.Systems and Industrial Engineering DepartmentUniversity of ArizonaTucsonUSA
  3. 3.Management Information Systems DepartmentUniversity of ArizonaTucsonUSA

Personalised recommendations