A new color constancy model for machine vision

  • Tao Linmi 
  • Xu Guangyou 


Both physiological and psychological evidences suggest that the human visual system analyze images in neural subsystems tuned to different attributes of the stimulus. Color module and lightness module are such subsystems. Under this general result, a new physical model of trichromatic system has been developed to deal with the color constancy of computer vision. A normal color image is split into two images: the gray scale image and the equal lightness color image for the two modules. Relatively, a two-dimensional descriptor is applied to describe the property of surface reflectance in the equal lightness color image. This description of surface spectral reflectance has the property of color constancy. Image segmentation experiments based on color property of object show that the presented model is effective.


color constancy lightness normalization color vision computer vision 


  1. [1]
    Brainard D H. Color constancy in the nearly natural image. II. Achromatic loci.J. Opt. Soc. Am., 1998, A15: 307–325.CrossRefGoogle Scholar
  2. [2]
    Brainard D H, Freeman W T. Bayesian color constancy.J. Opt. Soc. Am., 1997, A14: 1393–1411.CrossRefGoogle Scholar
  3. [3]
    Zeki S. A Vision of the Brain. Blackwell Scientific Publications, London, 1993.Google Scholar
  4. [4]
    Mullen K T. Contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings.J. Physiol. London, 1985, 359: 381–400.Google Scholar
  5. [5]
    R L De Valois, Morhan H, Snodderly D M. Psychophysical studies of monkey vision III. Spatial luminance contrast sensitivity tests of macaque and human observers.Vision Research, 1974, 14: 75–81.CrossRefGoogle Scholar
  6. [6]
    Parraga C A, Brelstaff Get al. Color and luminance information in nature scenes.J. Opt. Soc. Am., 1998, A15: 563–569.CrossRefGoogle Scholar
  7. [7]
    Foley J D, A van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley, Reading MA., 1982Google Scholar
  8. [8]
    Gonzalez R C, Woods R E. Digital Image Processing. Third edition, Addison-Wesley, Reading MA., 1992.Google Scholar
  9. [9]
    Levkowitz H. Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications. Boston: Kluwer Academic Publishers, 1997.CrossRefGoogle Scholar
  10. [10]
    Judd D B, MacAdam D L, Wyszecki G W. Spectral distribution of typical daylight as a function of correlated color temperature.J. Opt. Soc. Am., 1964, 54: 1031–1040.Google Scholar
  11. [11]
    Marimont D H, Wandell B A. Linear models of surface and illuminant spectra.J. Opt. Soc. Am., 1992, A9: 1905–1913.Google Scholar
  12. [12]
    Cohen J. Dependency of the spectral reflectance curves of the Munsell color chips.Psychonomic Sci., 1964, 1: 369.Google Scholar
  13. [13]
    Dannemiller J L. Spectral reflectance of natural objects: How many basis functions are necessary.J. Opt. Soc. Am., 1992, A9: 507–515.Google Scholar
  14. [14]
    Barlow H B. What causes trichromacy? A theoretical analysis using comb-filtered spectra.Vision Res., 1982, 22: 635–643.CrossRefGoogle Scholar
  15. [15]
    Stiles W S, Wyszecki G W, Ohta N. Counting metameric object-color stimuli using frequency-limited spectral reflectance functions.J. Opt. Soc. Am., 1977, 67: 779.Google Scholar
  16. [16]
    Maloney L, Wandell B. Color constancy: A method for recovering surface spectral reflectance.J. Opt. Soc. Am., 1986, A3: 29–33.CrossRefGoogle Scholar
  17. [17]
    D’Zmura M, Lennie P. Mechanisms of color constancy.J. Opt. Soc. Am., 1986, A3: 1662–1672.Google Scholar
  18. [18]
    D’Zmura M, Iverson G. Color constancy I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces.J. Opt. Soc. Am., 1993, A10: 2148–2165.Google Scholar
  19. [19]
    Shafer S A. Using color to separate reflection components.Color Res. App., 1985, 10(4): 210–218.CrossRefGoogle Scholar
  20. [20]
    Tao L M, Yao G Z, Wang Y J. A computational theory of human color vision.Acta Psychologia Sinica, 1993, 25: 233–240.Google Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 2001

Authors and Affiliations

  • Tao Linmi 
    • 1
  • Xu Guangyou 
    • 1
  1. 1.Information Laboratory, Department of Computer Science and TechnologyTsinghua UniversityBeijingP. R. China

Personalised recommendations