Advertisement

On sums of linear and bounded mappings

  • R. Ger
  • P. Volkmann
Article

Abstract

We give a necessary and sufficient condition in order that a mapf from a real linear space into a real Banach space should have the formf =L + r withL being a linear operator andr being a bounded perturbation.

Keywords

Linear Operator Functional Equation Bound Mapping Real Banach Space Homogeneous Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Czerwik, On the stability of the homogeneous mapping.C.R. Math. Rep. head. Sci. Canada 14 (1992), 228–272.MathSciNetGoogle Scholar
  2. [2]
    D. H. Hyers, On the stability of the linear functional equation.Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Z. Kominek andJ. MATKOWSKI, On the stability of the homogeneity condition.Results in Math. 27 (1995), 373–380.MATHMathSciNetGoogle Scholar
  4. [4]
    J. Schwaiger, The functional equation of homogeneity and its stability property.Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 205 (1996), 3–12.MathSciNetGoogle Scholar
  5. [5]
    L. Székelyhidi, On a characterization of linear operators.Acta Math. Hungar. 71 (1996), 293–295.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Ja. Tabor andJo. Tabor, Homogeneity is superstable.Publ. Math. Debrecen 45 (1994), 123–130.MATHMathSciNetGoogle Scholar
  7. [7]
    Jo. Tabor, On approximately linear mappings. In:“Stability of Hyers-Ulam type”, A Volume dedicated to D. H. Hyers & S. Ulam, (ed. Th. M. Rassias and J. Tabor), Hadronic Press, Inc., Palm Harbor (1994), 157–163.Google Scholar
  8. [8]
    —, Quasi-linear mappings.Rocznik Naukowo-Dydaktyczny WSP w Krakowie 189 (1997), 69–80.MathSciNetGoogle Scholar

Copyright information

© Mathematisches Seminar der Universität Hamburg 1998

Authors and Affiliations

  • R. Ger
    • 1
  • P. Volkmann
    • 2
  1. 1.Instytut MatematykiUniwersytet ŚląskiKatowicePoland
  2. 2.Mathematisches Institut IUniversität KarlsruheKarlsruheGermany

Personalised recommendations