Decolorization of melanin by lignin peroxidase fromPhanerochaete chrysosporium

  • Sung Hwan Woo
  • Jeung Suk Cho
  • Baek Seok Lee
  • Eun Ki Kim


Melanin was decolorized by lignin peroxidase fromPhanerochaete chrysosporium. This decolorization reaction showed a Michaelis-Mentens type relationship between the decolorization rate and concentration of two substrates: melanin and hydrogen peroxide. Kinetic constants of the decolorization reaction were 0.1 OD475/min (V max) and 99.7 mg/L (K m) for melanin and 0.08 OD475/min (V max) and 504.9 μM (K m) for hydrogen peroxide, respectively. Depletion of hydrogen peroxide interrupted the decolorization reaction, indicating the essential requirement of hydrogen peroxide. Pulsewise feeding of hydrogen peroxide continued the decolorizing reaction catalyzed by lignin peroxidase. These results indicate that enzymatic decolorization of melanin has applications in the development of new cosmetic whitening agents.


Phanerochaete chrysosporium melanin decolorization lignin peroxidase hydrogen peroxide 


  1. [1]
    Prota, G. (1992) Pigment cell metabolism: Enzymatic and chemical control. pp. 153–184. In: G. Prota (ed.).Melanins and Melanogenesis. Academic Press, San Diego, USA.Google Scholar
  2. [2]
    Krol, E. S. and D. C. Liebler (1998) Photoprotective actions of natural and synthetic melanins.Chem. Res. Toxicol. 11: 1434–1440.CrossRefGoogle Scholar
  3. [3]
    Horii, I. (2000) The 21C research trend on cosmeceuticals.J. Soc. Cos. Sci. Korea 26: 9–24.Google Scholar
  4. [4]
    Jeon, J. H. (2002) Purification and Characterization of 2,4-Dichlorophenol Oxidizing Peroxidase fromStreptomyces sp. AD001.J. Microbiol. Biotechnol. 12: 972–977.Google Scholar
  5. [5]
    Ryu, W. T., M. Y. Jang, and M. H. Cho (2003) The selective visualization of lignin peroxidase, manganese peroxidase and laccase, produced by white rot fungi on solid media.Biotechnol. Bioprocess Eng. 8: 130–135.CrossRefGoogle Scholar
  6. [6]
    Tekere, M., A. Y. Mswaka, R. Zvavya, and J. S. Read (2001) Growth, dye degradation, and ligninolytic activity studies on zimbabwean white-rot fungi.Enzyme Microb. Technol. 28: 420–426.CrossRefGoogle Scholar
  7. [7]
    Nakamura, Y. and G. Mtui (2003) Biodegradation of endocrine-disrupting phenolic compounds using laccase followed by activated sludge treatment.Biotechnol. Bioprocess Eng. 8: 294–299.CrossRefGoogle Scholar
  8. [8]
    Ralph, J. P. and D. E. A. Catcheside (1994) Decolourisation and depolymerisation of solubilised low lank coal by the white rot basidiomycetePhanerochaete chrysosporium.Appl. Microbiol. Biotechnol. 42: 536–542.Google Scholar
  9. [9]
    Tien, M. and T. K. Kirk (1988) Lignin peroxidase ofPhanerochaete chrysosporium.Method. Enzymol. 161: 238–249.CrossRefGoogle Scholar
  10. [10]
    Hofrichter, M. and W. Fritsche (1996) Depolymerization of low-rank coal by extracellular fungal enzyme systems: I. Screening for low-rank-coal-depolymerizing activities.Appl. Microbiol. Biotechnol. 46: 220–225.CrossRefGoogle Scholar
  11. [11]
    Flaig, W. and H. L. Schmidt (1957) Über die Einwirkung von Huminsauren auf das Wachstum einiger Penicilliummarten.Arch. Microbiol. 27: 1–32.Google Scholar
  12. [12]
    Ladd, J. N. and J. H. A. Butler (1969) Inhibition and stimulation of proteolytic enzyme activities by soil humic acids.Aust. J. Soil Res. 7: 253–262.CrossRefGoogle Scholar
  13. [13]
    Macor, M. (1979) Decomposition of humic acids from peat soil by micromycetes.Acta Fac. Rerum. Microbiol. 8: 1–23.Google Scholar
  14. [14]
    Wondrack, L., M. Szanto, and W. A. Wood (1989) Depolymerization of water soluble coal polymer from subbitumious coal and lignite by lignin peroxidase.Appl. Biochem. Biotechnol. 20: 765–780.CrossRefGoogle Scholar
  15. [15]
    Ollikka, P., K. Alhonmaki, V. M. Leppanen, T. Glumoff, T. Raijola, and I. Suominen (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes fromPhanerochaete chrysosporium.Appl. Environ. Microbiol. 59: 4010–4016.Google Scholar
  16. [16]
    Kim, M. S., E. J. Huh, H. J. Kim, and K. W. Moon (1998) Degradation of polycyclic aromatic hydrocarbons by selected white-rot fungi and the influence of lignin peroxidase.J. Microbiol. Biotechnol. 8: 129–133.Google Scholar
  17. [17]
    Swamy, J. and J. A. Ramsay (1999) The evaluation of white rot fungi in the decolorization of textile dyes.Enzyme Microb. Technol. 24: 130–137.CrossRefGoogle Scholar
  18. [18]
    Agodi, A., S. Stefani, C. Corsaro, F. Campanile, S. Gribaldo, and S. Sichel (1996) Study of a melanic pigment ofProteus mirabilis.Res. Microbiol. 147: 167–174.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  • Sung Hwan Woo
    • 1
  • Jeung Suk Cho
    • 1
  • Baek Seok Lee
    • 1
  • Eun Ki Kim
    • 1
  1. 1.Department of Biological EngineeringInha UniversityIncheonKorea

Personalised recommendations