Involutory homologies on affine planes: The conclusion

  • U. Dempwolff


Quadratic Form Normal Subgroup Bilinear Form Natural Module Index Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aschbacher, “Finite group theory”, Cambridge Univ. Press, Cambridge, 1986.Google Scholar
  2. [2]
    J. Conway et al., “ATLAS of finite groups”, Clarendon Press, Oxford, 1985.MATHGoogle Scholar
  3. [3]
    U. Dempwolff, On extensions of elementary abelian 2-groups by Σn. Glasnik Mat.14 (1979), 35–40.MathSciNetGoogle Scholar
  4. [4]
    U. Dempwolff, Involutory homologies on affine planes. Abh. Mat. Sem. Hamburg57 (1987), 37–55.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    U. Dempwolff, A note on 2-groups and homologies on affine planes. Boll. UMI (7) 1-A (1987), 383–386.MathSciNetGoogle Scholar
  6. [6]
    J. Dieudonné, “La géométrie des groupes classiques”, Springer, Berlin, 1972.Google Scholar
  7. [7]
    D. Gorenstein, “Finite groups”, Harper & Row, New York, 1968.MATHGoogle Scholar
  8. [8]
    R. Griess, Automorphisms of extra special groups and nonvanishing degree 2-cohomology. Pac. J. Math.48 (1973), 403–422.MATHMathSciNetGoogle Scholar
  9. [9]
    R. Griess, On a subgroup of order 215 /GL(5,2)/ inE 8(C), the Dempwolff group and Aut (D8. D8. D8). J. Alg.40 (1976), 261–279.CrossRefMathSciNetGoogle Scholar
  10. [10]
    B. Huppert, “Endliche Gruppen, I”, Springer, Berlin, 1967.MATHGoogle Scholar
  11. [11]
    B. Huppert, “Geometric Algebra”, Univ. of I11. at Chicago Circle, Lee. notes, 1970.Google Scholar
  12. [12]
    J. McLaughlin, Some subgroups ofSL n(F2). 111. J. Math.13 (1964), 108–115.MathSciNetGoogle Scholar
  13. [13]
    G. Mason andT. G. Ostrom, Some translation planes of orderP 2 and extra special type. Geom. Dedicata17 (1985), 307–322.MATHMathSciNetGoogle Scholar
  14. [14]
    H. Pollatsek, First cohomology groups of some linear groups over fields of characteristic two. I11. J. Math.15 (1971), 393–417.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1989

Authors and Affiliations

  • U. Dempwolff
    • 1
  1. 1.Fachbereich Mathematik der UniversitätKaiserlsautem

Personalised recommendations