Biotechnology and Bioprocess Engineering

, Volume 9, Issue 3, pp 223–228 | Cite as

The production of xylitol by enzymatic hydrolysis of agricultural wastes

  • Lien Ha Tran
  • Masanori Yogo
  • Hiroshi Ojima
  • Osamu Idota
  • Keiichi Kawai
  • Tohru Suzuki
  • Kazuhiro Takamizawa


Agricultural waste products, beech wood and walnut shells, were hydrolyzed at 40°C using mixed crude enzymes produced byPenicillium sp. AHT-1 andRhizomucor pusillus HHT-1.d-xylose, 4.1 g and 15.1 g was produced from the hydrolysis of 100 g of beech wood and walnut shells, respectively. For xylitol production,Candida tropicalis IFO0618 and the waste product hydrolyzed solutions were used. The effects on xylitol production, of adding glucose as a NADPH source,d-xylose and yeast extract, were examined. Finally, a 50% yield of xylitol was obtained by using the beech wood hydrolyzed solution with the addition of 1% yeast extract and 1% glucose at an initial concentration.


xylitol xylanolytic enzymes xylose reductase beech wood walnut shells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ]1]
    Rolla, G., A. A. Schele, and S. Assev (1987) Plaque formation and plaque inhibition.Dutsch. Zahnarztl. 42: 39–41.Google Scholar
  2. [2]
    Van Eys, J., Y. M. Wang, S. Chan, S. Tanphaichitr, and S. M. King (1974) Sugar in nutrition: Xylitol as a therapeutic agent in glucose-6 phosphate dehydrogenase deficiency, 8 ed, pp. 613–631 In: H. L. Sipple and K. W. McNatt (eds.). Academic Press, New York, USA.Google Scholar
  3. [3]
    Pepper, T. and P. M. Olinger (1988) Xylitol in sugar-free confections.Food Technol. 42: 98–106.Google Scholar
  4. [4]
    FAO (1999) Food and agriculture organization of the United Nations,FAO production yearbook 1999.Google Scholar
  5. [5]
    Winkelhausen, E. and S. Kuzmanova (1998) Microbial conversion of D-xylose to xylitol.J. Ferment. Bioeng. 86: 1–14.CrossRefGoogle Scholar
  6. [6]
    Rahman, A. K. M. S., S. Kawamura, M. Hatsu, M. M. Hoq, and K. Takamizawa (2001) Physicochemical properties of a novel α-L-arabinofuranosidase fromRhizomucor pusillus HHT-1.Can. J. Microbiol. 47: 67–772.Google Scholar
  7. [7]
    Rahman, A. K. M. S., N. Sugitani, M. Hatsu, and K. Takamizawa (2003) A role of xylanase, α-L-arabinofuranosidase, and xylosidase in xylan degradation.Can. J. Microbiol. 49: 58–64.CrossRefGoogle Scholar
  8. [8]
    Horitsu, H., Y. Yahashi, K. Takamizawa, K. Kawai, K. Suzuki, and N. Watanabe (1992) Production of xylitol from D-xylose byCandida tropicalis: optimization of production rate.Biotech. Bioeng. 40: 1085–1091.CrossRefGoogle Scholar
  9. [9]
    Yokoyama, S., T. Suzuki, K. Kawai, H. Horitsu, and K. Takamizawa (1995) Purification, characterization and structure analysis of NADPH dependent D-xylose reductase fromCandida tropicalis.J. Ferment. Bioengi. 79: 217–223.CrossRefGoogle Scholar
  10. [10]
    Yahashi, Y., H. Horitsu, K. Kawai, T. Suzuki, and K. Takamizawa (1996) Production of xylitol from D-xylose byCandida tropicalis-the effect of D-glucose feeding.J. Ferment. Bioeng. 81: 148–152.CrossRefGoogle Scholar
  11. [11]
    Bailey, M. J., P. Biely, and K. Poutanen (1992) Interlaboratory testing of methods for assay of xylanase activity.J. Biotechnol. 23: 257–270.CrossRefGoogle Scholar
  12. [12]
    Cho, C. H., M. Hatsu, and K. Takamizawa (2002) The production of D-xylose by enzymatic hydrolysis of agricultural wastes.Water Sci. Technol. 45: 97–102.Google Scholar
  13. [13]
    Oh, D. K. and S. Y. Kim (1998) Increase of xylitol yield by feeding xylose and glucose inCandida tropicalis.Appl. Microbiol Biotechnol. 50: 419–425.CrossRefGoogle Scholar
  14. [14]
    Kim, Y. S., S. Y. Kim, J. H. Kim, and S. C. Kim (1999) Xylitol production using recombinantSaccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal δ-sequences.J. Biotechnol. 67: 159–171.CrossRefGoogle Scholar
  15. [15]
    Choi, J.-H., K.-H. Moon, Y.-W. Ryu, and J.-H. Seo (2000) Production of xylitol in cell recycle fermentation ofCandida tropicalis.Biotechnol Lett. 22: 1625–1628.CrossRefGoogle Scholar
  16. [16]
    Azuma, M. I., J. Keuchi, R. Kinitani, J. Kato, and H. Ooshima (2000) Increase in xylitol production ofCandida tropicalis.Biotechnol. Lett. 22: 1625–1628.CrossRefGoogle Scholar
  17. [17]
    Chung, Y. S., M. D. Kim, W. L. Lee, Y. W. Ryu, J. H. Kim, and J. H. Seo (2002) Stable expression of xylose reductase gene enhance xylitol production in recombinantSaccharomyces cerevisiae.Enzyme Microb. Technol. 20: 809–816.CrossRefGoogle Scholar
  18. [18]
    Kim, M. D., Y. S. Jeun, S. G. Kim, Y. W. Ryu, and J. H. Seo (2002) Comparison of xylitol production in recombinantSaccharomyces cerevisiae strain harboring XYL1 gene ofPichia stipitis and GRE3 gene ofS. cerevisiae.Enzyme Microb. Technol. 31: 862–866.CrossRefGoogle Scholar
  19. [19]
    Hallborn, J., M. Waldfridsson, U. Airakisinen, H. Ojamo, B. Haln-Hägerdal, M. Penttila, and S. Keränen (1991) Xylitol production by recombinantSaccharomyces cerevisiae Bio/Technology 9: 1090–1095.CrossRefGoogle Scholar
  20. [20]
    Delgenes, J. P., M. C. Escare, J. M. Laplace, R. Moletta, and J. M. Navarro (1998) Biological production of industrial chemicals,i.e. xylitol and ethanol, from lignocellulose by controlled mixed culture.Ind. Crops Products. 7: 101–111.CrossRefGoogle Scholar
  21. [21]
    Cho, C. H., S. Aruga, M. Hatsu, T. Suzuki, K. Kawai, and K. Takamizawa (2000) Development of medium by the combined treatment of steam explosion and chemical decomposition of peanut shells for production of xylitol byCandida tropicalis.J. Japan Soc. Waste Manage. Experts 11: 11–20.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  • Lien Ha Tran
    • 1
    • 4
  • Masanori Yogo
    • 1
  • Hiroshi Ojima
    • 1
  • Osamu Idota
    • 1
  • Keiichi Kawai
    • 3
  • Tohru Suzuki
    • 2
  • Kazuhiro Takamizawa
    • 3
  1. 1.United Graduate School of Agricultural ScienceGifu UniversityJapan
  2. 2.Life Science Research CenterGifu UniversityJapan
  3. 3.Faculty of Applied Biological ScienceGifu UniversityJapan
  4. 4.Institute of Biological-Food TechnologyHanoi University of TechnologyHanoiVietnam

Personalised recommendations