Biotechnology and Bioprocess Engineering

, Volume 9, Issue 3, pp 201–206 | Cite as

Vascular endothelial growth factor upregulates follistatin in human umbilical vein endothelial cells

  • In Suk Oh
  • Hwan Gyu Kim


Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.


VEGF follistatin DD-PCR MMPs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gerber, H. P., A. McMurtrey, J. Kowalski, M. Yan, B. A. Keyt, V. Dixit, and N. Ferrara (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway.J. Biol. Chem. 273: 30336–30343.CrossRefGoogle Scholar
  2. [2]
    Ferrara, N. (1996) Vascular endothelial growth factor.Eur. J. Cancer 32: 2413–2422.CrossRefGoogle Scholar
  3. [3]
    Carmeliet, P. (2003) Angiogenesis in health and disease.Nat. Med. 9: 653–660.CrossRefGoogle Scholar
  4. [4]
    de Vries, C., J. A. Escobedo, H. Ueno, K. Houck, N. Ferrara, and L. T. Williams (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor.Science 255: 989–991.CrossRefGoogle Scholar
  5. [5]
    Millauer, B., S. Wizigmann-Voos, H. Schnurch, R. Martinez, N. P. H. Moller, W. Risau, and A. Ulrich (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis.Cell 72: 835–846.CrossRefGoogle Scholar
  6. [6]
    Hockel, M., K. Schlenger, S. Doctrow, T. Kissel, and P. Vaupel (1993) Therapeutic angiogenesis.Arch. Surg. 128: 423–429.Google Scholar
  7. [7]
    Isner, J. M. and D. W. Losordo (2003) Therapeutic angiogenesis for heart failure.Nat. Med. 5: 491–492.CrossRefGoogle Scholar
  8. [8]
    Brusselmans, K., F. Bono, P. Maxwell, Y. Dor, M. Dewerchin, D. Collen, J. M. Herbert, and P. Carmeliet (2001) Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia.J. Biol. Chem. 276: 39192–39196.CrossRefGoogle Scholar
  9. [9]
    Neufeld, G., T. Cohen, S. Gengrinovitch, and Z. Poltorak (1999) Vascular endothelial growth factor (VEGF) and its receptors.FASEB J. 13: 9–22.Google Scholar
  10. [10]
    Robertson, D. M., R. Klein, F. L. de Vos, R. I. McLachlan, R. E. Wettenhall, M. T. Hearn, H. G. Burger, and D. M. de Kretser (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin.Biochem. Biophys. Res. Commu. 149: 744–749.CrossRefGoogle Scholar
  11. [11]
    Ueno, N., N. Ling, S. Y. Ying, F. Esch, S. Shimasaki, and R. Guillemin (1987) Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone.Proc. Natl. Acad. Sci. USA 84: 8282–8286.CrossRefGoogle Scholar
  12. [12]
    Kawakami, S., Y. Fujii, and S. J. Winters (2001) Follistatin production by skin fibroblasts and its regulation by dexamethasone.Mol. Cell. Endocrinol. 172: 157–167.CrossRefGoogle Scholar
  13. [13]
    DePaolo, L. V. (1997) Inhibins, activins, and follistatins: the saga continues.Exp. Biol. Med. 214: 328–339.Google Scholar
  14. [14]
    Risau, W. (1997) Mechanisms of angiogenesis.Nature 386: 671–674.CrossRefGoogle Scholar
  15. [15]
    Folkman, J. and Y. Shing (1992) Angiogenesis.J. Biol. Chem. 267: 10931–10934.Google Scholar
  16. [16]
    Brooks, P. C., S. Silletti, T. L. von Schalscha, M. Friedlander, and D. A. Cheresh (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity.Cell 92: 391–400.CrossRefGoogle Scholar
  17. [17]
    Liang, P. and A. B. Pardee (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257: 967–971.CrossRefGoogle Scholar
  18. [18]
    Kim, I., S. O. Moon, K. N. Koh, H. Kim, C. S. Uhm, H. J. Kwak, N. G. Kim, and G.Y. Koh (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein induces endothelial cell sprouting.J. Biol. Chem. 274: 26523–26528.CrossRefGoogle Scholar
  19. [19]
    Kleinen, D. E., I. M. K. Margulis, W. G. Stetler-Stevenson (1998) Cell and tissue culture: Laboratory procedures. pp. 5A7.1–5A7.8. In: A. Doyle, J. B. Griffiths, and D. G. Newell (eds.), Wiley, Sussex, UK.Google Scholar
  20. [20]
    Badruddoja, M. A., H. G. Krouwer, S. D. Rand, K.J. Rebro, A. P. Pathak, and K. M. Schmainda (2003) Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps.Neuro-oncol. 5: 235–243.CrossRefGoogle Scholar
  21. [21]
    Clerch, L. B., A. S. Baras, G. D. Massaro, E. P. Hoffman, and D. Massaro (2004) DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation.Am. J. Physiol. Lung Cell. Mol. Physiol. 286: 411–419.CrossRefGoogle Scholar
  22. [22]
    Kaiser, U. B., B. L. Lee, R. S. Carroll, G. Unabia, W. W. Chin, and G. V. Childs (1992) Follistatin gene expression in the pituitary: localization in gonadotropes and folliculostellate cells in diestrous rats.Endocrinology 130: 3048–3056.CrossRefGoogle Scholar
  23. [23]
    Kozian, D. H., M. Ziche, and H. G. Augustin (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis.Lab. Invest. 76: 267–276.Google Scholar
  24. [24]
    Pepper, J. S., R. Montesano, S. J. Mandriota, L. Orci, and J. D. Vassalli (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis.Enzyme Protein 49: 138–162.Google Scholar
  25. [25]
    Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko, and S. J. Weiss (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins.Cell 95: 365–377.CrossRefGoogle Scholar
  26. [26]
    Brown, M. D. and O. Hudlicka (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases.Angiogenesis 6: 1–14.CrossRefGoogle Scholar
  27. [27]
    Kliche, S. and J. Waltenberger (2001) VEGF receptor signaling and endothelial function.IUBMB Life 52: 61–66.CrossRefGoogle Scholar
  28. [28]
    Wang, H. and J. A. Keiser (1998) Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1.Circ. Res. 83: 832–840.Google Scholar
  29. [29]
    Itaya, H., T. Imaizumi, H. Yoshida, M. Koyama, S. Suzuki, and K. Satoh (2001) Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide.Thromb. Haemost. 85: 171–176.Google Scholar
  30. [30]
    Haas, T. L., M. Milkiewicz, S. J. Davis, A. L. Zhou, S. Egginton, M. D. Brown, J. A. Madri, and O. Hudlicka (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle.Am. J. Physiol. Heart Circ. Physiol. 279: 1540–1547.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  1. 1.Division of Biological Sciences, Institute for Molecular Biology & GeneticsChonbuk National UniversityChonbukKorea

Personalised recommendations