Advertisement

Biotechnology and Bioprocess Engineering

, Volume 9, Issue 3, pp 179–183 | Cite as

Characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-l-lysine

  • Sei Kwang Hahn
  • Allan S. Hoffman
Article

Abstract

A biocompatible polyelectrolyte complex multilayer (PECML) film consisting of poly-L-lysine (PLL) as a polycation and hyaluronic acid (HA) as a polyanion was developed to test its use for surface modification to prevent cell attachment and protein drug delivery. The formation of PECML through the electrostatic interaction of HA and PLL was confirmed by contact angle measurement, ESCA analysis, and HA content analysis. HA content increased rapidly up to 8 cycles for HA/PLL deposition and then slightly increased with an increasing number of deposition cycle.In vitro release of PLL in the PECML continued up to 4 days andca. 25% of HA remained on the chitosan-coated cover glass afterin vitro release test for 7 days. From the results, PECML of HA and PLL appeared to be stable for about 4 days. The surface modification of the chitosan-coated cover glass with PECML resulted in drastically reduced peripheral blood mononuclear cell (PBMC) attachment. Concerned with its use for protein drug delivery, we confirmed that bovine serum albumin (BSA) as a model protein could be incorporated into the PECML and its release might be triggered by the degradation of HA with hyaluronidase.

Keywords

polyelectrolyte complex multilayer hyaluronic acid poly-L-lysine surface modification peripheral blood mononuclear cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites.Science 277: 1232–1237.CrossRefGoogle Scholar
  2. [2]
    Decher, G., B. Lehr, K. Lowack, Y. Lvov, and J. Schmitt (1994) New composite films for biosensors: Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA.Biosens. Bioelectr. 9: 677–683.CrossRefGoogle Scholar
  3. [3]
    Gao, M., B. Richter, S. Kirstein, and H. Mhwald (1998) Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles.J. PhysChem. 102: 4096–4103.Google Scholar
  4. [4]
    Sukhorukov, G. B., E. Donath, S. A. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Mohwald (1998) Step-wise polyelectrolyte assembly on particle surfaces B: A novel approach to colloid design.Poly. Adv. Technol. 9: 759–767.CrossRefGoogle Scholar
  5. [5]
    Serizawa, T., M. Yamaguchi, and M. Akashi (2002) Enzymatic hydrolysis of a layer-by-layer assembly prepared from chitosan and dextran sulfate.Macromol. 35: 8656–8658.CrossRefGoogle Scholar
  6. [6]
    Vazquez, E. D., M. Dewitt, P. T. Hammond, and D. M. Lynn (2002) Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes.J. Am. Chem. Soc. 124: 13992–13993.CrossRefGoogle Scholar
  7. [7]
    Ladam, G., S. Pierre, F. J. G. Cuisinier, G. Decher, and J. C. Vogel (2001) Protein adsorption onto auto-assembled polyelectrolyte films.Langmuir 17: 878–882.CrossRefGoogle Scholar
  8. [8]
    Caruso, F., K. Niikura, D. N. Furlong, and Y. Okahata (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing.Langmuir 13: 3427–3433.CrossRefGoogle Scholar
  9. [9]
    Laurent, T. C. (1998)The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives. Wenner-Gren International Series, Vol. 72. Portland Press, London, UK.Google Scholar
  10. [10]
    Balazs, E. A. and J. L. Denlinger (1993) Viscosupplementation: A new concept in the treatment of osteoarthritis.J. Rheumatol. 20: 3–9.Google Scholar
  11. [11]
    Balazs, E. A. (1983) Sodium hyaluronate and viscosurgery. pp. 5–28. In: Miller D. and Stegmann R. (eds.).Healon (Sodium Hyaluronate). A Guide to Its Use in Ophthalmic Surgery. Wiley, New York, USA.Google Scholar
  12. [12]
    Vercruysse K. P. and G. D. Prestwich (1998) Hyaluronate derivatives in drug delivery.Crit. Rev. Therap. Carr. Sys. 15: 513–555.Google Scholar
  13. [13]
    West, D. C., I. N. Hampson, F. Arnold, and S. Kumar (1985) Angiogenesis induced by degradation products of hyaluronic acid.Science 228: 1324–1326.CrossRefGoogle Scholar
  14. [14]
    Campoccia, D., P. Doherty, M. Radice, P. Brun, G. Abatangelo, and D. F. Williams (1998) Semisynthetic resorbable materials from hyaluronan esterification.Biomaterials 19: 2101–2117.CrossRefGoogle Scholar
  15. [15]
    Kuo, J. W., D. A. Swann, and G. D. Prestwich (1991) Chemical modification of hyaluronic acid by carbodiimides.Bioconj. Chem. 2: 232–241.CrossRefGoogle Scholar
  16. [16]
    Balazs, E. A. and A. Leshchiner (1986) Cross-linked gels of hyaluronic acid and products containing such gels.US Patent 4,582,865.Google Scholar
  17. [17]
    Balazs, E. A. and A. Leshchiner (1987) Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues.US Patent 4,713,448.Google Scholar
  18. [18]
    Luo, Y., K. Kirker, and G. D. Prestwich (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery.J. Control. Rel. 69: 169–184.CrossRefGoogle Scholar
  19. [19]
    Hahn, S. and T. Shimobouji (2003) Sustained release formulation of protein drugs.Japanese Patent 2003-385054.Google Scholar
  20. [20]
    Hahn, S., T. Shimobouji, and T. Nakamura (2002) Controlled release of protein drugs.Japanese Patent 2002-338167.Google Scholar
  21. [21]
    Shu, X. Z., Y. Liu, F. Palumbo, and G. D. Prestwich (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth.Biomaterials 24: 3825–3834.CrossRefGoogle Scholar
  22. [22]
    Shu, X. Z., Y. Liu, F. Palumbo, Y. Luo, and G. D. Prestwich (2003)In situ crosslinkable hyaluronan hydrogels for tissue engineering.Biomaterials 25: 1339–1348.Google Scholar
  23. [23]
    Picart, C., P. Lavalle, P. Hubert, F. J. G. Cuisinier, G. Decher, P. Schaaf, and J. C. Vogel (2001) Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface.Langmuir 17: 7414–7424.CrossRefGoogle Scholar
  24. [24]
    Hu, M., E. E. Sabelman, C. Tsai, J. Tan, and V. R. Hentz (2000) Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine.Tiss. Eng. 6: 585–593.CrossRefGoogle Scholar
  25. [25]
    Bitter, T. and H. Muir (1962) A modified uronic acid carbazole reaction.Anal. Biochem. 4: 330–334.CrossRefGoogle Scholar
  26. [26]
    Hahn, S., S. Jelacic, R. V. Maier, P. S. Stayton, and A. S. Hoffman (2004) Anti-inflammatory drug release from hyaluronic acid hydrogels.J. Biomat. Sci. Polym. Ed. In press.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2004

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations