Biotechnology and Bioprocess Engineering

, Volume 8, Issue 4, pp 240–245 | Cite as

Affinity separations using microfabricated microfluidic devices:In situ photopolymerization and use in protein separations



The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650°C to obtain enclosed channels. A polymer has been successfully polymerizedin situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based onin situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.


affinity separation microscale devices nanobiotechnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lee, K. H. (2001) Proteomics: A technology-driven and a technology-limited discovery science.Trends Biotechnol. 19: 217–222.CrossRefGoogle Scholar
  2. [2]
    Liu, H., D. Lin, and J. H. Yates, III (2002) Review: Multidimensional separations for protein/peptide analysis in the post-genomic era.Bio Techniques 32: 898–911.Google Scholar
  3. [3]
    Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Ouerfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes.Nature 415: 141–147.CrossRefGoogle Scholar
  4. [4]
    Ho, Y., A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. L. Adams, A. Millar, P. Taylor, K. Bennett, K. Boutilier, L. Y. Yang, C. Wolting, I. Donaldson, S. Schandorff, J. Shewnarane, M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar, Z. Lin, K. Michalickova, A. R. Willems, H. Sassi, P. A. Nielsen, K. J. Rasmussen, J. R. Andersen, L. E. Johansen, L. H. Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V. Poulsen, B. D. Sorensen, J. Matthiesen, R. C. Hendrickson, F. Gleeson, T. Pawson, M. F. Moran, D. Durocher, M. Mann, C. W. V. Hogue, D. Figeys, M. Tyers (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.Nature 415: 180–183.CrossRefGoogle Scholar
  5. [5]
    Kumar, A. and M. Snyder (2002) Protein complexes take the bait.Nature. 415: 123–124.CrossRefGoogle Scholar
  6. [6]
    Raymackers, J., A. Daniels, V. De Brabandere, C. Missiaen, M. Dauwe, P. Verhaert, E. Vanmechelen, and L. Meheus (2000) Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionizationmass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry.Electrophoresis 21: 2266–2283.CrossRefGoogle Scholar
  7. [7]
    Ericson, C., J. Holm, T. Ericson, and S. Hjerten (2000) Electroosmosis- and pressure-driven chromatography in chips using continuous beds.Anal. Chem. 72: 81–87.CrossRefGoogle Scholar
  8. [8]
    Von Heeren, F., E. Verpoorte, A. Manz, and W. Thormann (1996) Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure.Anal. Chem. 68: 2044–2053.CrossRefGoogle Scholar
  9. [9]
    Harrison, D. J., A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip.Anal. Chem. 64: 1926–1932.CrossRefGoogle Scholar
  10. [10]
    Dolník, V., S. Liu, and S. Jovanovich (2000) Review: Capillary electrophoresis on microchip.Electrophoresis 21: 41–54.CrossRefGoogle Scholar
  11. [11]
    Yao, S., D. S. Anex, W. B. Caldwell, D. W. Arnold, K. B. Smith, and K. B. Schultz (1999) SDS capillary gel electrophoresis of proteins in microfabricated channels.Proc. Natl. Acad. Sci. USA 96: 5372–5377.CrossRefGoogle Scholar
  12. [12]
    Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow (2001) Protein sizing on a microchip.Anal. Chem. 73: 1207–1212.CrossRefGoogle Scholar
  13. [13]
    Hofmann, O., D. Che, K. A. Cruichshank, and U. R. Müller (1999) Adaptation of capillary isoelectric focusing to microchannels on a glass chip.Anal. Chem. 71: 678–686.CrossRefGoogle Scholar
  14. [14]
    Bashir, R., R. Gomez, A. Sarikaya, M. R. Ladisch, J. Sturgis, and J. P. Robinson (2001) Adsorption of avidin on microfabricated surfaces for protein biochip applicationBiotechnol. Bioeng. 73: 324–328.CrossRefGoogle Scholar
  15. [15]
    Bernard, A., D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H. R. Bosshard, and H. Biebuyck (2001) Affinity capture of proteins from solution and their dissociation by contact printing.Nat. Biotechnol. 19: 866–869.CrossRefGoogle Scholar
  16. [16]
    Fan, Z. H., S. Mangru, R. Granzow, P. Heaney, W. Ho, O. Dong, and R. Kumar (1999) Dynamic DNA hybridization on a chip using paramagnetic beads.Anal. Chem. 71: 4851–4859.CrossRefGoogle Scholar
  17. [17]
    Oleschuk, R. D., L. L. Shultz-Lockyear, Y. Ning, and D. J. Harrison (2000) Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography.Anal. Chem. 72: 585–590.CrossRefGoogle Scholar
  18. [18]
    Buranda, T., J. Huang, V. H. Perez-Luna, B. Schreyer, L. A. Sklar, and G. P. Lopez (2002) Biomolecular recognition on well-characterized beads packed in microfluidic channels.Anal. Chem. 74: 1149–1156.CrossRefGoogle Scholar
  19. [19]
    Wang, C., R. Oleschuk, F. Ouchen, J. Li, P. Thibault, and D. J. Harrison (2000) Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface.Rapid Commun. Mass Spectrom. 14: 1377–1383.CrossRefGoogle Scholar
  20. [20]
    Throckmorton, D. J., T. J. Shepodd, and A. Singh (2002) Electrochromatography in microchips: Reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths.Anal. Chem. 74: 784–789.CrossRefGoogle Scholar
  21. [21]
    Viklund, C., E. Pontén, B. Glad, K. Irgum, P. Hörstedt, and F. Svec (1997) “Molded” macroporous poly (glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties: Preparation of monoliths using photoinitiated polymerization.Chem. Mater. 9: 463–471.CrossRefGoogle Scholar
  22. [22]
    Chen, C. H. and W. C. Lee (2001) Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.J. Chromatogr. 921: 31–37.CrossRefGoogle Scholar
  23. [23]
    Chen, J. R., M. T. Dulay, and R. N. Zare (2000) Macroporous photopolymer frits for capillary electrochromatography.Anal. Chem. 72: 1224–1227.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2003

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Chemical EngineeringNational Chung Cheng UniversityChia-YiTaiwan

Personalised recommendations