Skip to main content
Log in

Affinity separations using microfabricated microfluidic devices:In situ photopolymerization and use in protein separations

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650°C to obtain enclosed channels. A polymer has been successfully polymerizedin situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based onin situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, K. H. (2001) Proteomics: A technology-driven and a technology-limited discovery science.Trends Biotechnol. 19: 217–222.

    Article  CAS  Google Scholar 

  2. Liu, H., D. Lin, and J. H. Yates, III (2002) Review: Multidimensional separations for protein/peptide analysis in the post-genomic era.Bio Techniques 32: 898–911.

    CAS  Google Scholar 

  3. Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Ouerfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes.Nature 415: 141–147.

    Article  CAS  Google Scholar 

  4. Ho, Y., A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. L. Adams, A. Millar, P. Taylor, K. Bennett, K. Boutilier, L. Y. Yang, C. Wolting, I. Donaldson, S. Schandorff, J. Shewnarane, M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar, Z. Lin, K. Michalickova, A. R. Willems, H. Sassi, P. A. Nielsen, K. J. Rasmussen, J. R. Andersen, L. E. Johansen, L. H. Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V. Poulsen, B. D. Sorensen, J. Matthiesen, R. C. Hendrickson, F. Gleeson, T. Pawson, M. F. Moran, D. Durocher, M. Mann, C. W. V. Hogue, D. Figeys, M. Tyers (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.Nature 415: 180–183.

    Article  CAS  Google Scholar 

  5. Kumar, A. and M. Snyder (2002) Protein complexes take the bait.Nature. 415: 123–124.

    Article  CAS  Google Scholar 

  6. Raymackers, J., A. Daniels, V. De Brabandere, C. Missiaen, M. Dauwe, P. Verhaert, E. Vanmechelen, and L. Meheus (2000) Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionizationmass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry.Electrophoresis 21: 2266–2283.

    Article  CAS  Google Scholar 

  7. Ericson, C., J. Holm, T. Ericson, and S. Hjerten (2000) Electroosmosis- and pressure-driven chromatography in chips using continuous beds.Anal. Chem. 72: 81–87.

    Article  CAS  Google Scholar 

  8. Von Heeren, F., E. Verpoorte, A. Manz, and W. Thormann (1996) Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure.Anal. Chem. 68: 2044–2053.

    Article  Google Scholar 

  9. Harrison, D. J., A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip.Anal. Chem. 64: 1926–1932.

    Article  CAS  Google Scholar 

  10. Dolník, V., S. Liu, and S. Jovanovich (2000) Review: Capillary electrophoresis on microchip.Electrophoresis 21: 41–54.

    Article  Google Scholar 

  11. Yao, S., D. S. Anex, W. B. Caldwell, D. W. Arnold, K. B. Smith, and K. B. Schultz (1999) SDS capillary gel electrophoresis of proteins in microfabricated channels.Proc. Natl. Acad. Sci. USA 96: 5372–5377.

    Article  CAS  Google Scholar 

  12. Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow (2001) Protein sizing on a microchip.Anal. Chem. 73: 1207–1212.

    Article  CAS  Google Scholar 

  13. Hofmann, O., D. Che, K. A. Cruichshank, and U. R. Müller (1999) Adaptation of capillary isoelectric focusing to microchannels on a glass chip.Anal. Chem. 71: 678–686.

    Article  CAS  Google Scholar 

  14. Bashir, R., R. Gomez, A. Sarikaya, M. R. Ladisch, J. Sturgis, and J. P. Robinson (2001) Adsorption of avidin on microfabricated surfaces for protein biochip applicationBiotechnol. Bioeng. 73: 324–328.

    Article  CAS  Google Scholar 

  15. Bernard, A., D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H. R. Bosshard, and H. Biebuyck (2001) Affinity capture of proteins from solution and their dissociation by contact printing.Nat. Biotechnol. 19: 866–869.

    Article  CAS  Google Scholar 

  16. Fan, Z. H., S. Mangru, R. Granzow, P. Heaney, W. Ho, O. Dong, and R. Kumar (1999) Dynamic DNA hybridization on a chip using paramagnetic beads.Anal. Chem. 71: 4851–4859.

    Article  CAS  Google Scholar 

  17. Oleschuk, R. D., L. L. Shultz-Lockyear, Y. Ning, and D. J. Harrison (2000) Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography.Anal. Chem. 72: 585–590.

    Article  CAS  Google Scholar 

  18. Buranda, T., J. Huang, V. H. Perez-Luna, B. Schreyer, L. A. Sklar, and G. P. Lopez (2002) Biomolecular recognition on well-characterized beads packed in microfluidic channels.Anal. Chem. 74: 1149–1156.

    Article  CAS  Google Scholar 

  19. Wang, C., R. Oleschuk, F. Ouchen, J. Li, P. Thibault, and D. J. Harrison (2000) Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface.Rapid Commun. Mass Spectrom. 14: 1377–1383.

    Article  CAS  Google Scholar 

  20. Throckmorton, D. J., T. J. Shepodd, and A. Singh (2002) Electrochromatography in microchips: Reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths.Anal. Chem. 74: 784–789.

    Article  CAS  Google Scholar 

  21. Viklund, C., E. Pontén, B. Glad, K. Irgum, P. Hörstedt, and F. Svec (1997) “Molded” macroporous poly (glycidyl methacrylate-co-trimethylolpropane trimethacrylate) materials with fine controlled porous properties: Preparation of monoliths using photoinitiated polymerization.Chem. Mater. 9: 463–471.

    Article  CAS  Google Scholar 

  22. Chen, C. H. and W. C. Lee (2001) Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.J. Chromatogr. 921: 31–37.

    Article  CAS  Google Scholar 

  23. Chen, J. R., M. T. Dulay, and R. N. Zare (2000) Macroporous photopolymer frits for capillary electrochromatography.Anal. Chem. 72: 1224–1227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin H. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Lee, WC. & Lee, K.H. Affinity separations using microfabricated microfluidic devices:In situ photopolymerization and use in protein separations. Biotechnol. Bioprocess Eng. 8, 240–245 (2003). https://doi.org/10.1007/BF02942272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942272

Keywords

Navigation