Advertisement

Biotechnology and Bioprocess Engineering

, Volume 6, Issue 1, pp 61–66 | Cite as

Specific biodegradation of polychlorinated biphenyls (PCBs) facilitated by plant terpenoids

  • Kyung-Ja Jung
  • Eungbin Kim
  • Jae-Seong So
  • Sung-Cheol Koh
Article

Abstract

The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4′-dichlorobiphenyl (4,4′-DCBp) and 2,2′-dichlorobiphenyl (2,2′-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders,Pseudomonas sp. P166 andRhodococcus sp. T104, were found to grow on both biphenyl and terpenoids ((S)-(−) limonene,p-cymene and α-terpinene) whereasArthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4′-DCBp and 2,2′-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(−) limonene,p-cymene and α-terpinene, could degrade 4,4′-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(−) limonene, could also degrade 2,2′-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

Keywords

Arthrobacter B1B bioremediation bph genes terpenoids Pseudomonas sp. P166 PCBs resting cell assay Rhodococcus sp. T104 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brown, J. F., Jr., R. E. Wagner, H. Feng, D. L. Bedard, M. J. Brennan, J. C. Carnahan, and R. J. May (1987) Environmental dechlorination of PCBs.Environ. Toxicol. Chem. 6: 579–593.CrossRefGoogle Scholar
  2. [2]
    Bedard, D. L., M. L. Haberl, R. J. May, and M. J. Brennan (1987) Evidence for novel mechanism of polychlorinated biphenyl metabolism inAlcaligenes eutrophus H850.Appl. Environ. Microbiol. 53: 1103–1112.Google Scholar
  3. [3]
    Focht, D. D. and W. Brunner (1985) Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil.Appl. Environ Microbiol. 50: 1058–1063.Google Scholar
  4. [4]
    Harkness, M. R. J. B. McDermott, D. A. Abramowicz, J. J. Salvo, W. P. Flanagan, M. L. Stephens, F. J. Mondello, R. J. May, J. H. Lobos, K. M. Carroll, A. A. Bracco, K. M. Fish, G. L. Warner, P. R. Wilson, D. K. Dietrich, D. T. Lin, C. B. Morgan, and W. L. Gately (1993)In situ stimulation of aerobic PCB biodegradation in Hudson River sediments.Science 259: 503–507.CrossRefGoogle Scholar
  5. [5]
    Hernandez B. S., S. Koh, M. Chial, and D. D. Focht (1997) Terpene-utilizing isolates and their relevance to enhanced biotranformation of PCBs in soil.Biodegradation 8: 153–158.CrossRefGoogle Scholar
  6. [6]
    Lewis, R. J., Sr. (1989)Sax’s Dangerous Properties of Industrial Materials, 8th ed. van Nostrand Reinhold, New York, NY, USA.Google Scholar
  7. [7]
    Robinson, G. K. and M. J. Lenn (1994) The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives.Biotechnol. Genet. Eng. Rev. 12: 139–188.Google Scholar
  8. [8]
    Focht, D. D. (1995) Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls.Curr. Opt. Biotechnol. 6: 341–346.CrossRefGoogle Scholar
  9. [9]
    Donnelly, P. K., R. S. Hegde, and J. S. Fletcher (1994) Growth of PCB-degradaing bacteria on compounds from photosynthetic plants.Chemosphere 28: 981–988.CrossRefGoogle Scholar
  10. [10]
    Fletcher, J. S., P. K. Donnelly, and R. S. Hegde (1995) Plant assisted poly-chlorinated biphenyl (PCB) biodegradation. In:Proceedings of the 14th Annual Symposium on Current Topics in Plant Biochemistry, Physiology and Molecular Biology. University of Missouri-Columbia, Columbia, MO, USA.Google Scholar
  11. [11]
    Furukawa, K. (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria.Biodegradation 5: 289–300.CrossRefGoogle Scholar
  12. [12]
    Higson, F. K. (1992) Microbial degradation of biphenyl and its cerivatives.Adv. Appl. Microbiol. 37: 135–164.CrossRefGoogle Scholar
  13. [13]
    Gilbert, E. S., and D. E. Crowley (1997) Plant compounds that induce polychlorinated biphenyl biodegradation byArthrobacter sp. strain B1B.Appl. Environ. Microbiol 63: 1933–1938.Google Scholar
  14. [14]
    Burdock, G. A. (1995)Fenaroli’s Handbook of Flavour Ingredients 3rd ed., pp. 107. CRC Press, Boca Raton. FL, USA.Google Scholar
  15. [15]
    Arensdorf, J. J. and D. D. Focht (1995) A meta cleavage pathway for 4-chloro-benzoate, an intermediate in the metabolism of 4-chlorobiphenyl byPseudomonas cepacia P166.Appl. Environ. Microbiol. 61: 443–447.Google Scholar
  16. [16]
    McCullar, M. V., V. Brenner, R. H. Adams, and D. D. Focht (1994) Construction of a novel polychlorinated biphenyl-degrading bacterium: utilization of 3,4′-dichlorobiphenyl byPseudomonas acidovorans M3GY.Appl. Environ.Microbiol. 60: 3833–3839.Google Scholar
  17. [17]
    Focht, D. D. (1995) Aerobic Biotransformations of Polychlorinated Biphenyls. pp. 811–814. In Hurst, C. J., G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach and M. V. Walter,Manual of Environmental Microbiology, ASM Press, Washington, DC, USA.Google Scholar
  18. [18]
    Park, Y. I., J. S. So, and S. C. Koh (1999) Induction by carvone of polychlorinated biphenyl(PCB)-degradative pathway inAlcaligenes eutrophus H850 and its molecular monitoring.J. Microbiol. Biotechnol. 9: 804–810.Google Scholar
  19. [19]
    Seeger, M., K. N. Timmis, and B. Hofer (1995) Coriversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychloro-biphenyl degradation encoded by the bph locus ofPseudomonas sp. strain LB400.Appl. Environ. Microbiol. 61: 3353–3358.Google Scholar
  20. [20]
    Arnett C. M., J. V. Parales, and J. D. Haddock. (2000) Influence of chlorine sub-stitiuents on rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase ofBurkholderia sp. strain LB400.Appl. Environ. Microbiol. 66: 2928–2933.CrossRefGoogle Scholar
  21. [21]
    Bedard, D. L., R. E. Wagner, M. J. Brennan, M. L. Haberl, and J. F. Brown, Jr. (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls byAlcaligenes eutrophus H850.Appl. Environ Microbiol. 53: 1094–1102.Google Scholar
  22. [22]
    Ahmad, D., R. Masse, and M. Sylvestre (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation byPseudomonas testosteroni: Homology to polychlorobiphenyl-degrading genes in other bacteriaGene 86: 53–61.CrossRefGoogle Scholar
  23. [23]
    Koh, S.-C., Y. I. Park, Y. M. Koo, and J. S. So (2000) Flant terpenes and lignin as natural cosubstrates in biodegradation of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs).Biotechnol. Bioprocess Eng. 5: 164–168.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2001

Authors and Affiliations

  • Kyung-Ja Jung
    • 1
  • Eungbin Kim
    • 2
  • Jae-Seong So
    • 3
  • Sung-Cheol Koh
    • 1
  1. 1.Division of Civil and Environmental EngineeringKorea Maritime UniversityPusanKorea
  2. 2.Department of BiologyYonsei UniversitySeoulKorea
  3. 3.Department of Biological Engineering, Center of Advanced Bioseparation TechnologyInha UniversityIncheonKorea

Personalised recommendations