Applied Biochemistry and Biotechnology

, Volume 23, Issue 3, pp 237–247 | Cite as

Influence of the support on the reaction course of tributyrin hydrolysis catalyzed by soluble and immobilized lipases

  • Cristina Otero
  • Eitel Pastor
  • Victor M. Fernández
  • Antonio Ballesteros


Lipases from different origins have been immobilized in supports chosen by its different aquaphilicity and used as biocatalysts for the hydrolysis of tributyrin. The changes of the concentration of tri-, di-, monobutyrin, glycerol, and butyric acid during the reactions catalyzed by soluble, as well as immobilized, lipases were evaluated by gas chromatography. The experimental data were fitted to a simple kinetic model for the sequential reaction of tributyrin hydrolysis. The calculated apparent rate constants were different for the biocatalysts used and were apparently related to diffusional effects and aquaphilicity of the supports. Maximal yields of dibutyrin were found with the solubleCandida lipase, whereas the highest yield of monobutyrin (90%) was obtained with the least aquaphylic derivative (Candida-Celite).

Index Entries

Aquaphilicity tributyrin, hydrolysis of Candida cilindracea lipase lipases, immobilized 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Desnuelle, P. (1972),The Enzymes, 3rd ed., vol. 7, Boyer, P. D., ed., Academic, New York, pp. 575–616.Google Scholar
  2. 2.
    Borgstrom, B. and Brockman, H. L., eds. (1984),Lipases, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Benzonana, G. and Esposito, S. (1971),Biochim. Biophys. Acta 231, 15.Google Scholar
  4. 4.
    Lie, O. and Lambertsen, G. (1986),Fett. Seif. Anstrichm. 88, 365.CrossRefGoogle Scholar
  5. 5.
    Kimura, Y., Tanaka, A., Sonomoto, K., Nihira, T., and Fukui, S. (1983),Eur. J. Appl. Microbiol. Biotechnol. 17, 107.CrossRefGoogle Scholar
  6. 6.
    Yokozeki, K., Yamanaka, S., Takinami, K., Hirose, Y., Tanaka, A., Sonomoto, K., and Fukui, S. (1982),Eur. J. Appl. Microbiol. Biotechnol. 14, 1.CrossRefGoogle Scholar
  7. 7.
    Reslow, M., Adlercreutz, P., and Mattiasson, B. (1988),Eur. J. Biochem. 172, 573.CrossRefGoogle Scholar
  8. 8.
    Sokolovskii, V. D. and Kovalenko, G. A. (1988),Biotechnol. Bioeng. 32, 916.CrossRefGoogle Scholar
  9. 9.
    Guisan, J. M. and Ballesteros, A. (1981),Enzyme Mic. Technol. 3, 313.CrossRefGoogle Scholar
  10. 10.
    Eigtved, P. (1989),US Patent 4, 798,793.Google Scholar
  11. 11.
    Otero, C., Ballesteros, A., and Guisán, J. M. (1988),Appl. Biochem. Biotechnol. 19, 163.CrossRefGoogle Scholar
  12. 12.
    Wang, C. S., Hartsuck, J. A. and Weiser, D. (1985),Biochim. Biophys. Acta 837, 111.Google Scholar
  13. 13.
    Wang, C. S., Hartsuck, J. A., and Downs, D. (1988),Biochemistry 27, 4834.CrossRefGoogle Scholar
  14. 14.
    Guisán, J. M., Melo, J. V., and Ballestros, A. (1981),Appl. Biochem. Biotechnol. 6, 37.CrossRefGoogle Scholar
  15. 15.
    Mattiasson, B. and Mosbach, M. (1971),Biochim. Biophys. Acta 235, 253.Google Scholar
  16. 16.
    Otero, C., Pastor, E., and Ballesteros, A. (1989),Appl. Biochem. Biotechnol., in press.Google Scholar

Copyright information

© The Humana Press Inc 1990

Authors and Affiliations

  • Cristina Otero
    • 1
  • Eitel Pastor
    • 1
  • Victor M. Fernández
    • 1
  • Antonio Ballesteros
    • 1
  1. 1.Instituto de CatalisisCSICMadridSpain

Personalised recommendations