Advertisement

Generalizations of girstmair’s formulas

  • M. Hlrabayashi
Article
  • 44 Downloads

Abstract

In 1994 and 1995 GIRSTMAIR gave (relative) class number formulas for the imaginary quadratic field\(\mathbb{Q}(\sqrt { - p} )\), P an odd prime with p ≡ 3 (mod 4) and p ≥ 7, using the coefficients of the digit expression of 1/p and z/p, respectively, where z is an integer with 1 ≤ z ≤p - 1. We extend the formulas to an imaginary abelian number field.

Keywords and phrases

digit expression relative class number imaginary abelian number field determinant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Bundschuh,Einführung in die Zahlentheorie. Springer-Verlag, 2002.Google Scholar
  2. [2]
    L. Carlitz andF. R. Olson, Maillet’s determinant.Proc. Amer. Math. Soc. 6 (1955), 265–269.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    K. Girstmair, The digits of 1/p in connection with class number factors.Acta Arith. 67 (1994), 381–386.MATHMathSciNetGoogle Scholar
  4. [4]
    -, Periodische Dezimalbrüche — was nicht jeder darüber weiß, in:Jahrebuch Überblicke Math., Vieweg, 1995, pp. 163–179.Google Scholar
  5. [5]
    —, Inkeri’s determinant for an imaginary abelian number field by M. Hirabayashi.Math. Reviews 2003J (2003), 7352–7352.Google Scholar
  6. [6]
    H. Hasse,Über die Klassenzahl abelscher Zahlkörper. Academie-Verlag, 1952. reprinted with an introduction by J. Martinet, Springer-Verlag, 1985.Google Scholar
  7. [7]
    F. Hazama, Demjamenko matrix, class number, and Hodge group.J. Number Theory 34 (1990), 174–177.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Hirabayashi, A generalization of Maillet and Demyanenko determinants.Acta Arith. 83 (1998), 391–397.MATHMathSciNetGoogle Scholar
  9. [9]
    -, A formula of Girstmair and a remark on the relative class number formula, in:S. I. KATAYAMA,C. LEVESQUE andT. NAKAHARA (eds.),Proc. of the 2003 Nagoya Conference “Yokoi-Chowla Conjedure and Related Problems”, Furukawa Total Pr. Co., 2004, pp. 11–24.Google Scholar
  10. [10]
    R. Kučera, Formulae for the relative class number of an imaginary abelian field in the form of a determinant.Nagoya Math. J. 163 (2001), 167–191.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 2005

Authors and Affiliations

  1. 1.Kanazawa Institute of TechnologyIshikawaJapan

Personalised recommendations