A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation

  • A. G. Bratsos


A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrödinger equation into a linear algebraic system. This method is developed by re placing the time and the space partial derivatives by parametric finite-difference re placements and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

AMS Mathematics Subject Classification

65J15 47H17 49D15 

Key words and Phrases

Nonlinear cubic Schrödinger equation soliton finite-difference method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Argyris, M. Haase,An Engineer’s Guide to Soliton Phenomena: Application of the Finite Element Method, Comput. Methods Appl. Mech. Engrg.61 (1987), 71–122.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. G. Bratsos,A Linearized Finite-difference Method for the solution of the non-linear Cubic Schrödinger Equation, Communications in Applied Analysis, Vol.4, 1 (2000), 133–139.MATHMathSciNetGoogle Scholar
  3. 3.
    D.F. Griffiths, A.R. Mitchel and J. LI. Morris,A numerical study of the non-linear Schrödinger equation, Comput. Meths. Appl. Mech. Engrg.45 (1984), 177–215.MATHCrossRefGoogle Scholar
  4. 4.
    J.M. Sanz-Serna,Conservative and Nonconservative Schemes for the Solution of the non-linear Schrödinger Equation, IMA Journal of Numerical Analysis,6 (1986), 25–42.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. L. Lamb,Elements of soliton theory, Wiley, (1980).Google Scholar
  6. 6.
    T. R. Taha and M. J. Ablowitz,Analytical and Numerical Aspects of Certain non-linear Evolution Equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys.55 (1984) 203–230.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E.H. Twizell, A.G. Bratsos and J.C. Newby,A finite-difference method for solving the cubic Schrödinger equation, Mathematics and Computers in Simulation,43 (1997), 67–75.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J.A.C Weideman and B.M. Herbst,Split-step methods for the solution of the non-linear Schrödinger equation, SIAM J. Numer. Anal. 23(3) (1986), 485–507.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    G.B. Whitham,Linear and nonlinear Waves, New York: Wiley-Interscience (1974).MATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2001

Authors and Affiliations

  1. 1.Department of MathematicsTechnological Educational Institution (T.E.I.) of AthensAthensGreece

Personalised recommendations