A method for solving a fuzzy linear programming

  • E. Yazdani Peraei
  • H. R. Maleki
  • M. Mashinchi


In this paper a fuzzy linear programming problem is presented. Then using the concept of comparison of fuzzy numbers, by the aid of the Mellin transform, we introduce a method for solving this problem.

AMS Mathematics Subject Classification

90C05 90C70 

Key words and phrases

Probability density function Mellin transform fuzzy number fuzzy linear programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Compos and J.L. Verdegay,Linear programming problems and ranking of fuzzy numbers, Fuzzy Sets and Systems, 32 (1989), 1–12.CrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Delgado, J.L. Verdegay and M.A. Vila,A general model for fuzzy linear programming, Fuzzy Sets and Systems, 29 (1989), 21–29.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    B. Epstein,Some application of the Mellin transform in statistics, Ann. Math. Statist., 19 (1948), 370–379.MATHCrossRefGoogle Scholar
  4. 4.
    P. Fortemps and M. Roubens,Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, 82 (1996), 319–330.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E.S. Lee and R.J. Li,Comparison of fuzzy numbers based on the probability measure of fuzzy events, Comput. Math. Appl., 15 (1988), 887–896.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H.R. Maleki, M. Tata and M. Mashinchi,Linear programming with fuzzy variables, Fuzzy Sets and Systems,109(2000), 21–33.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C.S. Park,The Mellin transform in probabilistic cash flow modeling, Engry. Economist., 32 (1987), 115–134.CrossRefGoogle Scholar
  8. 8.
    M. Sakawa,Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York, 1993.MATHGoogle Scholar
  9. 9.
    Li Xiaozhang,Possibilistic linear programming problems with fuzzy constraints, The Journal of Fuzzy Mathematics, 5 (1997), 425–430.Google Scholar
  10. 10.
    Li Xiaozhang,Fuzzy linear programming problems with fuzzy variables and fuzzy coefficients, BUSEFAL, 73 (1998), 45–52.Google Scholar
  11. 11.
    K.P. Yoon,A probabilistic approach to rank complex fuzzy numbers, Fuzzy Sets and Systems, 80 (1996) 167–176.CrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2001

Authors and Affiliations

  • E. Yazdani Peraei
    • 1
  • H. R. Maleki
    • 2
  • M. Mashinchi
    • 2
  1. 1.Imam Mohammad Baghar Tecnical CollegeSariIran
  2. 2.Faculty of Mathematics and Computer ScincesShahid Bahonar University of KermanKermanIran

Personalised recommendations