Advertisement

Recovery type a posteriori error estimates in finite element methods

  • Zhimin Zhang
  • Ningning Yan
Invited Article
  • 141 Downloads

Abstract

This is a survey article on finite elementa posteriori error estimates with an emphasize on gradient recovery type error estimators. As an example, the error estimator based on the ZZ patch recovery technique will be discussed in some detail.

AMS Mathematics Subject Classification

65N30 65N15 

Key words and phrases

Finite element method a posteriori error estimate ZZ gradient patch recovery residual estimator 

References

  1. 1.
    S. Adjerid and J.F. Flaherty,A local refinement finite element method for two dimensional parabolic systems, SIAM J. Sci. Stat. Comput.,9(1988), 792–811.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Ainsworth,The influence and selection of subspaces for a-posteriori estimators, Numer. Math.,73(1996), 399–418.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Ainsworth and I. Babuška,Reliable and robust a posteriori error estimation for singularly perturbed reaction diffusion problems, SIAM J. Numer. Anal.,36(1999), 331–353.CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Ainsworth and J.T. Oden,A unified approach to a posteriori error estimation based on element residual methods, Numer. Math.,65(1993), 23–50.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Ainsworth and J.T. Oden,A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000.MATHGoogle Scholar
  6. 6.
    M. Ainsworth and J.T. Oden,A posteriori error estimates for Stokes’ and Ossen’s equations, SIAM J. Numer. Anal.,34(1997), 228–245.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    I. Babuška, R. Durán and R. Rodríuez,Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements, SIAM J. Numer. Anal.,29(1992), 947–964.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. Babuška and A.D. Miller,A feedback finite element methods with a posteriori error estimation: Part 1. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg.,61(1987), 1–40.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    I. Babuška and W.C. Rheinboldt,Error estimates for adaptive finite element computations, SIAM J. Numer. Anal.,18(1978), 736–754.Google Scholar
  10. 10.
    I. Babuška and W.C. Rheinboldt,A posteriori error estimates for the finite element methods, Int. J. Numer. Methods Engrg.,12(1978), 1597–1615.MATHCrossRefGoogle Scholar
  11. 11.
    I. Babuška and T. Strouboulis,The Finite Element Method and its Reliability, Oxford University Press, 2001.Google Scholar
  12. 12.
    I. Babuška, T. Strouboulis, and C.S. Upadhyay,A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Engrg.,114(1994), 307–378.CrossRefMathSciNetGoogle Scholar
  13. 13.
    I. Babuška, T. Strouboulis, and C.S. Upadhyay,A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems with particular reference to the behavior near the boundary, Int. J. Numer. Methods Engrg.,40(1997), 2521–2577.MATHCrossRefGoogle Scholar
  14. 14.
    I. Babuška and D. Yu,Asymptotically exact a posteriori error estimator for biquadratic elements, Finite Element in Analysis and Design,3(1987), 341–354.MATHCrossRefGoogle Scholar
  15. 15.
    R. Bank,Hierarchical bases and the finite element method, Acta Numerica,5(1996), 1–45.MathSciNetGoogle Scholar
  16. 16.
    R. Bank and K. Smith,A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal.,30(1993), 921–935.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Bank and A. Weiser,Some a posteriori error estimators for elliptic partial differential equations, Math. Comput.,44(1985), 283–301.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Braess and R. Verfürth,A posteriori error estimators for the Raviart-Thomas element, to appear in SIAM J. Numer. Anal.Google Scholar
  19. 19.
    C. Carstensen and R. Verfürth,Edge residual dominate a posteriori error estimates for low order finite element method, SIAM J. Numer. Anal.,36(1999), 1571–1567.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Chen and Y. Huang,High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, P.R. China, 1995.Google Scholar
  21. 21.
    Z.M. Chen and R.H. Nochetto,Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math.,84(2000), 527–548.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Z.M. Chen, R.H. Nochetto and A. Schmidt,A characteristic Galerkin method with adaptive error control for the continuous casting problem, Comput. Methods Appl. Mech. Engrg.,189(2000), 249–276.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    P. Clément,Approximation by finite element functions using local regularization, RAIRO Anal. Numér.,2(1975), 77–84.Google Scholar
  24. 24.
    W. Dörfler,A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.,33(1996), 1106–1124.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    W. Dörfler and R.H. Nochetto,Small data oscillation implies the saturation assumption, preprint.Google Scholar
  26. 26.
    R. Durán, M.A. Muschietti, and R. Rodríguez,On the asymptotic exactness of the error estimators for linear triangular elements, Numer. Math.,59(1991), 107–127.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. Durán, L. Gastaldi, and C. Padra,A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci.,9(1999), 1165–1178.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    R. Durán and R. Rodríguez,On the asymptotic exactness of Bank-Weiser’s estimator, Numer. Math.,62(1992), 297–304.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    K. Eriksson, D. Estep, P. Hansbo, and C. Johnson,Introduction to adaptive methods for differential equations, Acta Numerica,4(1995), 105–158.MathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Eriksson and C. Johnson,Adaptive finite element methods for parabolic problems, Part 1: A linear model problem, SIAM J. Numer. Anal.,28(1991), 43–77.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    W. Hoffmann, A.H. Schatz, L.B. Wahlbin, and G. Wittum,Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes, Part 1: A smooth problem and globally quasi-uniform meshes, to appear in Math. Comp.Google Scholar
  32. 32.
    C. Johnson and P. Hansbo,Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg.,101(1992), 143–181.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    M. Krizék, P. Neitaanmaki, and R. Stenberg (eds.),Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates, Lectures Notes in Pure and Applied Mathematics 196, Marcel Dekker, New York, 1998.MATHGoogle Scholar
  34. 34.
    B. Li and Z. Zhang,Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods for PDEs,15(1997), 151–167.Google Scholar
  35. 35.
    Q. Lin and N. Yan,Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, P.R. China, 1996.Google Scholar
  36. 36.
    W. Liu and N. Yan,A posteriori error estimates for some model boundary control problems, J. of Comput. and Appl. Math.,120(2000), 159–173.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    W. Liu and N. Yan,Quasi-norm a priori and a posteriori error estimates for nonconforming approximation of P-Laplacian, to appear in Numer. Math.Google Scholar
  38. 38.
    R.H. Nochetto,Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp.,64(1995), 1–22.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    R.H. Nochetto, G. Savar, and C. Verdi,A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math.,53(2000), 525–589.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    J.T. Oden, L. Demkowicz, W. Rachowicz, and T.A. Westermann,Toward a universal h-p adaptive finite element strategy, Part 2: A posteriori error estimation, Comput. Methods Appl. Mech. Engrg.,77(1989), 113–180.MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    R. Rannacher and F.T. Suttmeier,A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity, Comput. Methods Appl. Mech. Engrg.,176(1999), 333–361.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    R. Rodriguez,Some remarks on Zienkiewicz-Zhu estimator, Int. J. Numer. Meth. PDEs.,10(1994), 625–635.MATHGoogle Scholar
  43. 43.
    L.R. Scott and S. Zhang,Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp.,54(1992), 483–493.CrossRefMathSciNetGoogle Scholar
  44. 44.
    R. Verfürth,A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996.MATHGoogle Scholar
  45. 45.
    R. Verfürth,Robust a posteriori error estimators for a singularly perturbed reactiondiffusion equation, Numer. Math.,78(1998), 479–493.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    R. Verfürth,A posteriori error estimators for convection-diffusion equations, Numer. Math.,80(1998), 641–663.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    L.B. Wahlbin,Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Vol. 1605, Springer, Berlin, 1995.MATHGoogle Scholar
  48. 48.
    N.E. Wiberg and F. Abdulwahab,Patch recovery based on superconvergent derivatives and equilibrium, Int. J. Numer. Mech. Eng.,36(1993), 2703–2724.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    J. Xu and A. Zhou,Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp.,69(2000), 881–909.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    N. Yan and A. Zhou,Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, to appear in Comput. Methods Appl. Mech. Engrg.Google Scholar
  51. 51.
    Z. Zhang,Ultraconvergence of the patch recovery technique (II), Math. Comp.,69(2000), 141–158.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Z. Zhang and H. D. Victory Jr.,Mathematical analysis of Zienkiewicz-Zhu’s derivative patch recovery technique for quadrilateral finite elements, Numer. Methods for PDEs,12(1996), 507–524.MATHMathSciNetGoogle Scholar
  53. 53.
    Z. Zhang and J.Z. Zhu,Analysis of the superconvergent patch recovery technique and a posteriori error estimator in finite element method (I), Comput. Methods Appl. Mech. Engrg.,123(1995), 173–187.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    J.Z. Zhu,A posteriori error estimation-the relationship between different procedures, Comput. Methods Appl. Mech. Engrg.,150(1997), 411–422.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    J.Z. Zhu and Z. Zhang,The relationship of some a posteriori error estimators, Comput. Methods Appl. Mech. Engrg.,176(1999), 463–475.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    O.C. Zienkiewicz and J.Z. Zhu,A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Mech. Engrg.,24(1987), 337–357.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    O.C. Zienkiewicz and J.Z. Zhu,The superconvergent patch recovery and a posteriori error estimates, Part 1: The recovery technique, Int. J. Numer. Methods Engrg.,33(1992), 1331–1364.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    O.C. Zienkiewicz and J.Z. Zhu,The superconvergent patch recovery and a posteriori error estimates, Part 2: Error estimates and adaptivity, Int. J. Numer. Methods Engrg.,33(1992), 1365–1382.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    O. C. Zienkiewicz and J. Z. Zhu,The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg.,101(1992), 207–224.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2001

Authors and Affiliations

  1. 1.Department of MathematicsWayne State UniversityDetroitUSA
  2. 2.Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations