Skip to main content
Log in

Analysis of conversion of particulate biomass to ethanol in continuous solids retaining and cascade bioreactors

  • Session 3 Bioprocessing Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Design considerations for continuous conversion of biomass to ethanol using the simultaneous saccharification and fermentation (SSF) process are discussed. A previously presented and verified modeling approach is extended to describe advanced solid-substrate reactor systems incorporating solids and enzyme retention, and reaction in CSTR cascades. A single solids retaining CSTR has predicted advantages over a batch process at low-residence time and conversion. The predicted performance of a cascade of CSTR reactors for SSF approaches that of the batch system, whereas a cascade system with differential retention of solids with respect to the aqueous phase (solids residence time = 1.5 times the liquid residence time) is predicted to allow a 47% decrease in overall reactor volume relative to a batch system at high conversion (90% cellulose utilization). Further benefits are anticipated because of the effects of substrate classification in nonwell-mixed reactor configurations. Apparatus for laboratory-scale experimentation using solid substrates is presented, along with progress toward experimental verification of the reactor concepts proposed. In addition to predicting bioreactor productivity, the modeling was used to examine ethanol tolerance. In contrast to the approximately linear inhibition trend observed for soluble substrates, the ratio of dilution rates necessary to achieve a fixed conversion in the absence and presence of inhibition is essentially unity until the maximum growth rate is approached, and falls precipitously thereafter. Implications of this and other simulation results for the bioreactor design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

Β-glucosidase concentration in solution U/L

c:

Conversion-independent component in rate function h−1

C:

Cellobiose concentration g/L

DRT:

Relative differential residence time of particles Dimensionless

Et:

Ethanol concentration g/L

ES:

Concentration of cellulose-cellulase complex U/L

E(t,Τ):

Residence time distribution in CSTR h−1

G:

Glucose concentration g/L

k:

Hydrolysis rate constant h−1

kC :

Rate constant for hydrolysis of cellobiose to glucose g/(U·h)

kG :

Monod constant g/L

kC/G :

Inhibition of cellobiose hydrolysis by glucose g/L

kS/C :

Inhibition of cellulose hydrolysis by cellobiose g/L

kS/E :

Inhibition of cellulase hydrolysis by ethanol g/L

kX/E :

Inhibition of cell growth by ethanol g/L

P:

Particle concentration in reactor Particles/L

Q:

Volumetric flow rate L/h

n:

Exponent of the declining substrate reactivity Dimensionless

ri :

Rate of formation of componenti g/(L·h)

S:

Cellulose component of the biomass substrate remaining g/L

t:

Time h

Vr :

Reactor volume L

X:

Fractional reactor cellulose conversion Dimensionless

Xc :

Cell concentration g/L

Xi :

Cellulose conversion in reactori Dimensionless

Xp :

Cellulose conversion of given particle within a population Dimensionless

Yx/g :

Cell yield per substrate consumed Dimensionless

YEt/g :

Product yield per substrate consumed Dimensionless

Cs :

Specific capacity of cellulose component for cellulase U/g

Μmax :

Maximum cell growth h−1

Τ:

Average CSTR liquid hydraulic residence time h

Τp :

Average CSTR particle residence time h

References

  1. Hinman, N. D., Schell, D.J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotech. 34/35, 639–649.

    Article  Google Scholar 

  2. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251(15 March), 1318–1323.

    Article  Google Scholar 

  3. Wright, J. D. (1988),Chem. Eng. Prog. (August), 62–74.

    Google Scholar 

  4. Chem Systems (1992),Technical and Economic Evaluation, Wood to Ethanol Process, Office of Energy Demand Policy, Department of Energy, Washington, DC, in press.

    Google Scholar 

  5. Asenjo, J. A., Sun, W.-H., and Spencer, J. L. (1991),Biotech. and Bioeng. 37, 1087–1094.

    Article  CAS  Google Scholar 

  6. Ladisch, M. R., and Svarczopf, J. A. (1991),Bioresource Technol. 36, 83–95.

    Article  CAS  Google Scholar 

  7. Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991),Appl. Biochem. Biotech. 28/29, 773–785.

    Article  Google Scholar 

  8. Spindler D. D., Wyman, C. E., and Grohmann, K. (1988),Biotech. and Bioeng. 34, 189–195.

    Article  Google Scholar 

  9. Huang, S. Y. and Chen, J. C. (1988),J. Ferm. Technol. 66(5), 509–516.

    Article  Google Scholar 

  10. Spindler, D. D., Wyman, C. E., Grohmann, K., and Mahageghi, A. (1989),Biotech. and Bioeng. 20/21, 529–540.

    Google Scholar 

  11. Holtzapple, M. T. and Humphrey, A. E. (1984),Biotech. and Bioeng. 26, 670–676.

    Article  CAS  Google Scholar 

  12. Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1990),Appl. Biochem. Biotech. 28/29, 59–74.

    Article  Google Scholar 

  13. Ladisch, M. R., Lin, K. W., and Voloch, M. (1983),Enz. Microbiol. Technol. 5 (March).

  14. Ladisch, M. and Schwandt, R. (1992), Proceedings, Technology for Expanding the Biofuels Industry. Department of Energy, Washington.

    Google Scholar 

  15. South, C. R., Hogsett, D. A. L., and Lynd, L. R. (1993),Enz. Microb. Tech. accepted for publication.

  16. Nutor, J. R. K. and Converse, A. O. (1991),Appl. Biochem. Biotech. 28/29, 757–771.

    Article  Google Scholar 

  17. Borchert, A. and Buchholz, K. (1987),Proc. Biochem. 22(6), 173–180.

    CAS  Google Scholar 

  18. Gusakov, A. V., Sinitsyn, A. P., and Anatole, A. K. (1987),Biotech. and Bioeng. 29, 906–910.

    Article  CAS  Google Scholar 

  19. Ryu, D. D. Y., Lee, S. B., Tassinari, T., and Macy, C. (1982),Biotech. and Bioeng. XXIV, 1047–1067.

    Article  Google Scholar 

  20. Hogsett, D. A., South, C. R., and Lynd, L. R. (1991), AIChE Annual Meeting. Los Angeles, CA.

  21. South, C. R., Hogsett, D. A., and Lynd, L. R. (1992),Appl. Biochem. Biotech. 39/40, 587–600.

    Article  Google Scholar 

  22. Ghose, T. K. (1987),Pure Appl. Chem. 59(2), 257–268.

    Article  CAS  Google Scholar 

  23. Ooshima, H., Burns, D. F., and Converse, A. O. (1990),Biotech. and Bioeng. 36, 446–452.

    Article  CAS  Google Scholar 

  24. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990),Biotech. and Bioeng. 36, 275–287.

    Article  CAS  Google Scholar 

  25. Philippides, G. P., Smith, T. K., and Wyman, C. E. (1993),Biotech. and Bioeng. 41, 846–853.

    Article  Google Scholar 

  26. Ghose, T. K. and Tyagi, R. D. (1979),Biotech. and Bioeng. 21, 1400–1420.

    Google Scholar 

  27. van Uden, N. (1984),CRC Crit. Rev. Biotechnol. 1(3), 263–272.

    Google Scholar 

  28. Mohagheghi, A., Tucker, M., Grohmann, K., and Wyman, C. (1992),Appl. Biochem. Biotech. 33, 67–81.

    Article  CAS  Google Scholar 

  29. Clark, T. A. and Mackie, K. L. (1984),J. Chem. Tech. Biotechnol. 34a, 101–110.

    Google Scholar 

  30. Wayman, M., Chen, S., and Doan, K. (1992),Proc. Biochem. 27, 239–245.

    Article  CAS  Google Scholar 

  31. Gusakov, A. V. and Sinitsyn, A. P. (1985),Enz. Micro. Tech. 7(July), 346–352.

    Article  Google Scholar 

  32. Ghose, T. K. and Tyagi, R. D. (1979),Biotech. and Bioeng. 21, 1387–1400.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

South, C.R., Lynd, L.R. Analysis of conversion of particulate biomass to ethanol in continuous solids retaining and cascade bioreactors. Appl Biochem Biotechnol 45, 467–481 (1994). https://doi.org/10.1007/BF02941822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941822

Index Entries

Navigation