Skip to main content
Log in

The pH-dependent energetic uncoupling ofZymomonas by acetic acid

Scientific note

  • Session 2 Applied Biological Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Conclusions

pH-dependent energetic uncoupling ofZymomonas by acetic acid occurs by virtue of the permeability of the plasma membrane to the undissociated form of acetic acid (HAc) and the acidification of the cytoplasm resulting from the uptake of HAc and the consequential diversion of energy away from biosynthetic processes (growth) in order to maintain constant intracellular pH. Energetic uncoupling is manifested by an increase in specific productivity. The degree of uncoupling caused by HAc depends on a rather complex interaction between several different variables including membrane permeability, the transmembrane δpH and the concentraiton of undissociated form of acetic acid in the medium. Within the pH range of 5.0–5.5, maximal energic uncoupling is produced by 30–38 mM HAc. For practical purposes, in terms of the concentration of acetic acid, this corresponds to about 5 and 15 g/L at pH 5.0 and 5.5, respectively. Assuming any upper limit concentration of acetic acid in hydrolysate fermentation media of about 12 g/L, inhibition of Z.mobilis in terms of both ethanol yield and productivity is avoided by controlling the pH in the range of 5.5–6.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HAc:

undissociated acetic acid

Μ:

specific growth rate (h−1)

Yx/s :

growth yield co-efficient (g dry wt cells/g glucose)

Yp/s :

product yield (g ethanol/g glucose)

Qp :

average volumetric productivity (g ethanol/L/h)

qp :

specific productivity (g ethanol/g cell/h).

References

  1. Wright, J. D. (1988),Chem. Eng. Progress 84, 62–68.

    CAS  Google Scholar 

  2. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Article  Google Scholar 

  3. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  4. Keim, C. R. (1983),Enzyme Microbiol. Technol. 5, 103–114.

    Article  CAS  Google Scholar 

  5. Busche, R., Scott, C. D., Davidson, B. H., and Lynd, L. R. (1992),Appl. Biochem. Biotechnol. 34/35, 395–417.

    Article  Google Scholar 

  6. Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1984),Bioeng. Biotechnol. 26, 1003–1025.

    Article  CAS  Google Scholar 

  7. Ohta, K., Supanwong, K., and Hayashida, S. (1981),J. Ferment. Technol. 59, 435–439.

    CAS  Google Scholar 

  8. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  9. Lawford, H. G. (1988), Proc. VIII Int’l Symp. on Alcohol Fuels, Pub. by NEDO, Tokyo, pp. 21–27.

    Google Scholar 

  10. Lawford, H. G. and Ruggiero, A. (1990), inBioenergy, Proc. 7th Cdn. Bioenergy R&D Seminar, Hogan, E., ed., NRC Canada, pp. 401–408.

    Google Scholar 

  11. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  12. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. B. (1993),CRC Rev. Biotechnol. 13(1), 57–98.

    Article  CAS  Google Scholar 

  13. Rodriguez, E. and Callieri, D. A. S. (1986),Biotechnol. Letts 8, 745–748.

    Article  CAS  Google Scholar 

  14. Doelle, M. B., Greenfield, P. F., and Doelle, H. W. (1990),Proc. Biochem. 25(5), 151–156.

    CAS  Google Scholar 

  15. Beavan, M., Zawadzki, B., Droniuk, R., Fein, J., and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 319–326.

    Article  Google Scholar 

  16. Bringer, S., Sahm, H., and Swyzen, W. (1984),Biotechnol. Bioeng. Symp. 14, 311–319.

    CAS  Google Scholar 

  17. Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd. Yusof, Han, M. H., and Rhee, S. K. (1986),J. Ferment Technol. 64, 293–297.

    Article  CAS  Google Scholar 

  18. Parekh, S. R., Parekh, R. S., and Wayman, M., (1989),Proc. Biochem. 24, 88–91.

    CAS  Google Scholar 

  19. Freese, E., Sheu, C. W., and Galliers, E. (1973),Nature 241, 321.

    Article  CAS  Google Scholar 

  20. Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.

    Article  Google Scholar 

  21. Grethlein, H. E. (1985),Bio/Technolgy 3, 155–160.

    Article  CAS  Google Scholar 

  22. Lawford, H. G. and Rousseau, J. D. (1993), inEnergy from Biomass & Wastes XVI, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  23. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 205–216.

    Article  Google Scholar 

  25. Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 687–699.

    Article  Google Scholar 

  26. Nicholls, D. G. (1982), Bioenergetics—anintroduction to the chemiosmotic theory, Academic, Toronto, pp. 56–58.

    Google Scholar 

  27. Swings, J. and De Ley, J. (1977),Bacteriol. Rev. 41, 1–46.

    CAS  Google Scholar 

  28. Lawford, H. G. and Ruggiero, A. (1990),Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  29. Pampulha, M. E. and Louriero, V. (1989),Biotechnol. Letts. 11, 269–274.

    Article  CAS  Google Scholar 

  30. Mitchell, P. (1973),J. Bioenergetics 4, 63–91.

    Article  CAS  Google Scholar 

  31. Pankova, L. M., Shvinka, J. E., and Beker, M. J. (1988),Appl. Microbiol. Biotechnol. 28, 583–588.

    Article  CAS  Google Scholar 

  32. Pirt, S. J. (1975),Principles of Microbe and Cell Cultivation, Blackwell, London, UK, pp. 66–68.

    Google Scholar 

  33. Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1983),Biotechnol. Bioeng. 25, 103–121.

    Article  CAS  Google Scholar 

  34. Vega, J. L., Claussen, E. C., and Gaddy, J. L. (1987),Biotechnol. Bioeng. 29, 429–435.

    Article  CAS  Google Scholar 

  35. Lavers, B. H., Pang, P., MacKenzie, C. R., Lawford, G. R., Pik, J., and Lawford, H. G. (1981), inAdvances in Biotechnology, Moo-Young, M. and Robinson, C. W., eds., vol. II, Pergamon, Toronto, pp. 195–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. The pH-dependent energetic uncoupling ofZymomonas by acetic acid. Appl Biochem Biotechnol 45, 437–448 (1994). https://doi.org/10.1007/BF02941818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941818

Index Entries

Navigation