Applied Biochemistry and Biotechnology

, Volume 45, Issue 1, pp 269–282 | Cite as

PCR protocol- and inulin catabolism-based differentiation of inulinolytic soil bacteria

  • José D. Fontana
  • Spartaco Astolfi Fo
  • Renato Rogelin
  • Jerusa Kaiss
  • Maria Cella O. Hauly
  • Valeria C. Franco
  • Madalena Baron
Session 2 Applied Biological Research


Bacteria collected from rotting dahlia tubers, instead of degrading inulin to D-fructose, preferentially formed the known DFA III (Β-2.1′: α-2′,3 difructofuranose anhydride), inulobiose, higher inulo-oligo-saccharides, and exoheteropolysaccharides. Owing to the morphological and Gram staining variability, the bacterial isolates designated YLW and CRM were examined to differentiate them from a reference strainArthrobacter ureafaciens. The comparative analyses were whole DNA random amplification byTaq polymerase (RAPD-PCR protocol), culture media DFA III content in culture media, Chromatographic profile of oligosaccharides formed, and exopolysaccharide fractionation/ fragmentation.

A comparative study in liquid shake cultures showed that the isolate YLW was faster than the reference strain in the production of DFA III when the inulin/yeast extract ratio was maintained at 10 in the medium, although a similar maximum yield was displayed with both bacteria (13–14 mg of DFA/mL cell free media from the initial 30 mg/mL of inulin load). Doubling the yeast extract input, an even faster onset of DFA III production occurred with YLW but with no further improvement in the maximum yield. Both strains further degraded the resulting DFA during the stationary growth phase.

The main ability of CRM when grown on inulin was the production of exopolysaccharides, although culture condition variation also allowed DFAIII production, which was accompanied by somewhat lower amounts of its reducing analog, inulobiose.

Index Entries

DFA III difructose anhydrides inulobiose exopolysaccharides inulinolytic bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van der Wende, L. A. (ed.) (1989),Bioprocessing Technol. 11(2), 1.Google Scholar
  2. 2.
    Hauly, M. C. O., Bracht, A., Beck, R., and Fontana, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 297–308.CrossRefGoogle Scholar
  3. 3.
    Jackson, R. F. and Coergen, S. M. (1929),Bur. Stand. J. Res. 3 (RP79), 27–80.Google Scholar
  4. 4.
    Tanaka, K., Uchyiama, T., and Ito, A. (1972),Biochim. Biophys. Acta 284, 248–256.Google Scholar
  5. 5.
    Haraguchi, K. (1988),Jpn. Kokai Tokkyo Koho (Japan)62, 275.Google Scholar
  6. 6.
    Vogel, H. J. (1956),Microbiol. Gen. Bull. 13, 42, 43.Google Scholar
  7. 7.
    Koneman, E. W., Allen, S. D., Dowell, V. R., and Sommers, H. M. (1989),Diagnostico Microbiologico, Medica Panamericana (ed.), Sao Paulo, Brazil, pp. 29,30.Google Scholar
  8. 8.
    Whistler, R. L. and Smart, C. L. (1953),Polysaccharide Chemistry, Academic, New York, 40,41.Google Scholar
  9. 9.
    Dawson, R. M. C., Elliot, D. C., Elliot, W. H., and Jones, K. M. (ed.) (1986),Data for Biochemical Research, Clarendon, Oxford, p. 543.Google Scholar
  10. 10.
    Baron, M., Gorin, P. A. J., and Iacomini, M. (1989),Agric. Biol. Chem. (Japan)53(7), 1751–1758.Google Scholar
  11. 11.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebbers, P. A., and Smith, F. (1956),Anal. Chem. 28(3), 350–356.CrossRefGoogle Scholar
  12. 12.
    Welsh, J. and McClelland, M. (1990),Nucleic Acids Res. 18, 7213–7218.CrossRefGoogle Scholar
  13. 13.
    Welsh, J. and McClelland, M. (1991),ibidem 19, 5275–5279.Google Scholar
  14. 14.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982),Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  15. 15.
    Brock, T. D. and Madigan, M. T. (ed.) (1988),Biology of Microorganisms, 5th ed, Prentice-Hall, Englewood Cliffs, NJ, pp. 761,762.Google Scholar
  16. 16.
    Atlas, R. M. (1984),Microbiology: Fundamentals and Applications. Macmillan, New York, p. 399.Google Scholar
  17. 17.
    Keddie, R. M. (ed.) (1974),Bergey’s Manual of Determinative Bacteriology, 8th ed., Baltimore, MD, p. 618.Google Scholar
  18. 18.
    Welsh, J., Honeycutt, R. J., McClelland, M., and Sobral, B. W. S. (1991),Theor. Appl. Genet. 82, 473–476.CrossRefGoogle Scholar
  19. 19.
    Haug, A. and Larsen, B. (1961),Acta Chem. Scand. 15, 1395–1396.CrossRefGoogle Scholar
  20. 20.
    Sakaguchi, K. and Okanishi, M. (ed.) (1980),Molecular Breeding and Genetics of Microorganisms, Kodanska, Tokyo and Academic, New York, p. 88.Google Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • José D. Fontana
    • 1
  • Spartaco Astolfi Fo
    • 2
  • Renato Rogelin
    • 2
  • Jerusa Kaiss
    • 1
  • Maria Cella O. Hauly
    • 1
  • Valeria C. Franco
    • 1
  • Madalena Baron
    • 1
  1. 1.LQBB, Biomass Chemo/Biotechnology Laboratory, Dept. of Biochemistry, UFPRFederal University of ParanaCURITIBA, PRBrazil
  2. 2.Dept. of Molecular BiologyUnB, Univ. of BrasiliaDFBrazil

Personalised recommendations