Advertisement

Applied Biochemistry and Biotechnology

, Volume 45, Issue 1, pp 35–50 | Cite as

Determination of reaction kinetics of barley straw using thermogravimetric analysis

  • A. E. Ghaly
  • A. Ergüdenler
Session 1 Thermal, Chemical, and Biological Processing

Abstract

Reaction kinetics of three varieties of barley straw (Kadeth, Laurier, and Leger) were studied at a heating rate of 20‡C/min in an oxidizing atmosphere of 15% oxygen and 85% nitrogen using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. The thermal degradation characteristics and the kinetic parameters (order of reaction, activation energy, and pre-exponential factor) were determined for the two reaction zones from the TGA and DTA curves. Thermal degradation rates in the first reaction zone were relatively higher than those in the second reaction zone. The thermal decomposition of the straw variety Kadeth started at a lower temperature (186‡C) than the straw varieties Laurier (229‡C) and Leger (223‡C). Residual weights recorded at 700‡C were in the range of 4.3–7.2%. Higher activation energies (85.4–103.2 kJ/mol) and pre-exponential factors (0.73 × 107–49.10 × 107) were obtained for all varieties of barley straw in the first reaction zone as compared to those of the second reaction zone (34.8–58.6 kj/mol and 0.27 × 102–14.43 × 102 for the activation energy and pre-exponential factor, respectively). The order of reactions were in the range of 2.0–2.3 and 1.1–1.2 for the first and second reaction zones, respectively.

Index Entries

Kinetics barley straw thermogravimetry oxidizing atmosphere activation energy pre-exponential factor order of reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Food and Agriculture Organization of the United Nations (1991),Quarterly Bulletin of Statistics, vol. 4, p. 21, New York.Google Scholar
  2. 2.
    Statistics Canada (1991),Field Crop Reporting Series—no. 8. Catalogue 22-002 Seasonal,70(8), 3–8.Google Scholar
  3. 3.
    Peill, J. E. (1980), inProceedings of Bioenergy R & D Seminar. National Research Council of Canada, Ottawa, Ontario.Google Scholar
  4. 4.
    Ergüdenler, A. and Ghaly, A. E. (1992),Biomass and Bioenergy 3(6), 419–430.CrossRefGoogle Scholar
  5. 5.
    Boateng, A. A., Walawender, W. P., Fan, L. T., and Chee, C. S. (1992),Bioresource Technology 40(3), 235–239.CrossRefGoogle Scholar
  6. 6.
    Maniatis, K., Bridgwater, A. V., and Buekens, A. (1989), inPyrolysis and Gasification. Ferrero, G. L., Maniatis, K., Buekens, A., and Bridgwater, A. V., eds. Elsevier Applied Science, London, pp. 274–281.Google Scholar
  7. 7.
    Corella, J., Herguido, J., and Gonzalez-Saiz, J. (1989), inPyrolysis and Gasification. Ferrero, G. L., Maniatis, K., Buekens, A., and Bridgwater, A. V., eds. Elsevier Applied Science, London, pp. 618–623.Google Scholar
  8. 8.
    Salour, D., Jenkins, B. M., Vafaei, M., and Kayhanian, M. (1989), Combustion of rice straw and straw/wood fuel blends in a fluidized bed reactor. ASAE Paper No. 89-6574, St. Joseph, MI.Google Scholar
  9. 9.
    Olsen, G., Pedersen, P. H., Henriksen, U., and Kofoed, E. (1989), inPyrolysis and Gasification. Ferrero, G. L., Maniatis, K., Buekens, A., and Bridgwater, A. V., eds. Elsevier Applied Science, London, pp. 290–295.Google Scholar
  10. 10.
    Ravn-Jensen, L. (1988), inResearch in Thermochemical Biomass Conversion. Bridgwater, A. V. and Kuester, J. L., eds. Elsevier Applied Science, London, pp. 1114–1124.Google Scholar
  11. 11.
    Kraus, U. (1985), inEnergy From Biomass. Palz, W., Coombs, J., and Hall, D.O., eds. Elsevier Applied Science, London, pp. 799–803.Google Scholar
  12. 12.
    Walawender, W. P., Hoveland, D. A., Anfwidsson, D., and Fan, L. T. (1982), inProceedings of the Sixth International FPRS Industrial Wood Energy Forum ’82. Washington, DC, vol. 2, pp. 263–272.Google Scholar
  13. 13.
    Ergüdenler, A. and Ghaly, A. E. (1992),J. Appl. Biochem. Biotechnol. 34/35, 75–91.CrossRefGoogle Scholar
  14. 14.
    Ghaly, A. E. and Ergüdenler, A. (1991),J. Appl. Biochem. Biotechnol. 27(4), 111–126.CrossRefGoogle Scholar
  15. 15.
    Bining, A. S. and Jenkins, B. M. (1992), Thermochemical reaction kinetics for rice straw from an approximate integral technique. ASAE Paper No. 92-6029, St. Joseph, MI.Google Scholar
  16. 16.
    Ghaly, A. E. and AlTaweel, A. M. (1990),Energy Sources 12, 131–145.CrossRefGoogle Scholar
  17. 17.
    Lipska-Quinn, A. E., Zeronian, S. H., and McGee, K. M. (1985), inFundamentals of Thermochemical Biomass Conversion. Overend, R. P., Milne, T. A., and Mudge, K. L., eds. Elsevier Applied Science, London, pp. 453–471.Google Scholar
  18. 18.
    Nassar, M. M. (1985),Wood Fiber Sci. 17(2), 266–273.Google Scholar
  19. 19.
    Koos, M., Repas, M., Kosik, M., Reisner, V., Mihalov, V., and Ciha, M. (1983),Chem. Zvesti. 37(3), 399–408.Google Scholar
  20. 20.
    Koufopanos, C. A., Maschio, G., and Lucchesi, A. (1989),Can. J. Chem. Eng. 67, 75–84.Google Scholar
  21. 21.
    Agrawal, R. K. (1988),Can. J. Chem. Eng. 66, 403–412.Google Scholar
  22. 22.
    Agrawal, R. K. (1988),Can. J. Chem. Eng. 66, 413–418.CrossRefGoogle Scholar
  23. 23.
    Duvvuri, M. S., Muhlenkamp, S. P., Iqbal, K. Z., and Welker, J. R. (1975),J. Fire Flammability 6, 468–477.Google Scholar
  24. 24.
    Broido, A. (1969),J. Polymer Sci. Part A-2,7: 1761–1773.Google Scholar
  25. 25.
    Wendlandt, W. W. (1974),Thermal Methods of Analysis. 2nd ed., Wiley, New York.Google Scholar
  26. 26.
    Goldfarb, I. J., Guchan, R., and Meeks, A. C. (1968), Kinetic analysis of thermogravimetry. Part II. Programmed temperatures. Report No. ARML-TR-68-181. Air Force Laboratory, Wright-Patterson, AFB, OH.Google Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • A. E. Ghaly
    • 1
  • A. Ergüdenler
    • 1
  1. 1.Agricultural Engineering DepartmentTechnical University of Nova ScotiaHalifaxCanada

Personalised recommendations