Advertisement

Applied Biochemistry and Biotechnology

, Volume 45, Issue 1, pp 5–22 | Cite as

Two-temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process

  • Robert Torget
  • Hsu Teh-An
Session 1 Thermal, Chemical, and Biological Processing

Abstract

A novel two-temperature dilute-acid prehydrolysis of hybrid poplar xylan that exploits the xylan biphasic kinetics at moderate temperatures is described. A lower temperature (140‡C) is applied to hydrolyze the easily hydrolyzable xylan, and a higher temperature (170‡C) is subsequently applied to hydrolyze the remaining xylan. Using a bench-scale percolation reactor, yields of soluble xylose expressed in monomeric xylose equivalents as high as 92% of theoretical have been achieved with only 2% of the xylan being degraded to furfural. The lignocellulosic substrate produced from the pretreatment is readily converted to ethanol at a yield of 94% of theoretical via a simultaneous saccharification and fermentation process in 48 h. In terms of both yield of xylose equivalents and ethanol production level and rate, these improvements are far superior to those previously reported using a single-temperature dilute-acid pretreatment.

Index Entries

Hemicellulose dilute-acid pretreatment ethanol, xylan kinetics percolation reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 157–187.Google Scholar
  2. 2.
    Grohmann, K., Wyman, C. E., and Himmel, M. E. (1992), inEmerging Technologies for Materials and Chemicals from Biomass, Rowell, R. M., Schultz, T. P., and Narayan, R., eds., ACS Symp. Ser. #476, pp. 354–392.Google Scholar
  3. 3.
    McMillan, J. (1992),Processes for Pretreating Lignocellulosic Biomass: A Review, NREL/TP-421-4978, National Renewable Energy Laboratory, Golden, CO, pp. 1–44.Google Scholar
  4. 4.
    Grohmann, K., Torget, R., and Himmel, M. (1985),Biotech. Bioeng. Symp. 15, 59–80.Google Scholar
  5. 5.
    Grohmann, K., Torget, R., and Himmel, M. (1986),Biotech. Bioeng. Symp. 17, 135–151.Google Scholar
  6. 6.
    Torget, R., Himmel, M., Wright, J., and Grohmann, K. (1988),Appl. Biochem. Biotech. 17, 89–104.CrossRefGoogle Scholar
  7. 7.
    Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotech. 24, 115–126.CrossRefGoogle Scholar
  8. 8.
    Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991),Appl. Biochem. Biotech. 28/29, 75–86.CrossRefGoogle Scholar
  9. 9.
    Torget, R., Himmel, M., and Grohmann, K. (1992),Appl. Biochem. Biotech. 34/35, 115–123.CrossRefGoogle Scholar
  10. 10.
    Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotech. Bioeng. Symp. 14, 137–157.Google Scholar
  11. 11.
    Torget, R. (1985), M. S. Thesis, Colorado School of Mines, Golden, CO.Google Scholar
  12. 12.
    Grethlein, H. E. (1985),Bio. Technology 3, 155–160.Google Scholar
  13. 13.
    Springer, E. L., Harris, J. F., and Neill, W. K. (1963),TAPPI 46, 551–555.Google Scholar
  14. 14.
    Springer, E. L. and Zoch, L. L. (1968),TAPPI 51, 214–218.Google Scholar
  15. 15.
    Kobayashi, T. and Sakai, Y. (1956),Bull Agr. Chem. Soc. Japan 20, 1–7.Google Scholar
  16. 16.
    Maloney, M. T., Chapman, T. W., and Baker, A. J. (1985),Biotech. Bioeng. 27, 355–361.CrossRefGoogle Scholar
  17. 17.
    Conner, A. H. (1984),Wood Fiber Sci. 16, 268–277.Google Scholar
  18. 18.
    Carrasco, F. and Roy, C. (1992),Wood Sci. Technol. 26, 189–208.Google Scholar
  19. 19.
    Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. (1991),Appl. Biochem. Biotech. 28/29, 87–97.CrossRefGoogle Scholar
  20. 20.
    Grohmann, K. and Torget, R. W. (1992), U.S Patent #5,125,977.Google Scholar
  21. 21.
    Torget, R., Hsu, T., Kim, B. J., and Lee, Y. Y. (1992), AIChE 1992 Annual Meeting, Miami, FL.Google Scholar
  22. 22.
    Ghose, T. K. (1987),Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  23. 23.
    Spindler, D. D., Wyman, C. E., Grohmann, K., and Philippidis, G. P. (1992),Biotech. Lett. 14, 403–407.CrossRefGoogle Scholar
  24. 24.
    Official Test Methods (1983),TAPPI, Atlanta, GA.Google Scholar
  25. 25.
    Moore, W. E. and Johnson, D. B. (1967),Procedures for the Chemical Analysis of Wood and Wood Products, USDA Forest Products Laboratory, Madison, WI.Google Scholar
  26. 26.
    Technical Association of the Pulp and Paper Industry Standard Method T 250,TAPPI, “Acid-Soluble Lignin in Wood and Pulp.≓Google Scholar
  27. 27.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991),Appl. Biochem. Biotech. 28/29, 773–786.CrossRefGoogle Scholar
  28. 28.
    Smith, J. M. (1981),Chemical Engineering Kinetics, 3rd ed. McGraw-Hill Book Company, New York.Google Scholar
  29. 29.
    Abramowitz, M. and Stegun, I. A., eds. (1972),Handbook of Mathematical Functions, 10th printing, National Bureau of Standards, Washington D.C.Google Scholar
  30. 30.
    Kim, B. J., Lee, Y. Y., and Torget, R. (1993),Appl. Biochem. Biotech. accepted for publication.Google Scholar
  31. 31.
    Kim, B. J., Lee, Y. Y., and Torget, R. submitted for publication inAppl. Biochem. Biotech.Google Scholar
  32. 32.
    Lee, Y. Y. (1993), Personal communication, Auburn University, AL.Google Scholar
  33. 33.
    Tatsumoto, K., Baker, J. O., Tucker, M. P., Oh, K. K., Mohagheghi, A., Grohmann, K., and Himmel, M. E. (1988),Appl. Biochem. Biotech. 18, 159–174.CrossRefGoogle Scholar
  34. 34.
    Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotech. 34/35, 639–649.CrossRefGoogle Scholar
  35. 35.
    Conner, A. H., Wood, B. F., Hill, C. G., Jr., and Harris, J. F. (1985),J. Wood Chem. Tech. 5(4), 461–489.CrossRefGoogle Scholar
  36. 36.
    Burchhardt, G. and Ingram, L. O. (1992),Appl. and Environ. Microb. 58, 1128–1133.Google Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Robert Torget
    • 1
  • Hsu Teh-An
    • 1
  1. 1.Alternative Fuels DivisionNational Renewable Energy LaboratoryGolden

Personalised recommendations