Applied Biochemistry and Biotechnology

, Volume 57, Issue 1, pp 741–761 | Cite as

Likely features and costs of mature biomass ethanol technology

  • Lee R. Lynd
  • Richard T. Elamder
  • Charles E. Wyman
Session 4 Process Economics and Commercialization


Analysis is undertaken motivated by the question: “What are the likely features and cost of a facility producing ethanol from cellulosic biomass at a level of maturity comparable to a refinery?” This question is considered with respect to cost reductions arising from increased scale, lower-cost feedstock, and process improvements in pretreatment and biological conversion, but not other process steps. An “advanced technology” scenario is developed that represents our estimate of the most likely features of mature biomass ethanol technology. A “bestparameter” scenario, intended to be indicative of the potential for R&D-driven cost reductions, is also developed based on the best values for individual process parameters reported in the literature. Both scenarios involve large plants (2.7 million dry t feedstock/yr). Feedstock costs are taken to be $38.60/delivered dry t for the advanced scenario and $34.00/delivered dry t for the best-parameter scenario. Projected selling prices, including operating costs and capital recovery corresponding to a 14.2% return on investment, are 50¢/gal (pure ethanol basis) for the advanced technology case and 34¢/gal for the best-parameter case. These are markedly lower than the 118¢/gal selling price projected for base-case technology, with the largest share of cost reductions due to improved conversion technology. Key conversion technology improvements include, in order of importance, consolidated bioprocessing, advanced pretreatment, elimination of seed reactors, and faster rates. First-law thermodynamic efficiencies based on the biomass high heating value and production of ethanol and electricity are 61.2% for the advanced case and 69.3% for the best-parameter case, as compared to 50.3% currently. Combining advanced ethanol production technology of the type presented here with advanced gas turbine-based power generation is a promising direction for future analysis and may offer still further cost reductions and efficiency increases.

Index Entries

Ethanol biomass energy mature technology economics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hinman, N., Schell, D. J., Riley, C.J., Bergeron, P. W., and Walter, P. J. (1991),Appl. Biotechnol. Bioeng. 34/35, 639–657.CrossRefGoogle Scholar
  2. 2.
    Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report eleven: Evaluation of a wood-to-ethanol process. DOE/EP-0004, US Department of Energy, Washington, DC (1993).Google Scholar
  3. 3.
    Grethlein, H. E. and Nelson, T. (1993), Design study of low cost ethanol recovery processes. Michigan Biotechnology Institute.Google Scholar
  4. 4.
    1995 Renewable Oxygen/Ethanol Reference Guide. Hart/Information Resources, Inc. (1994).Google Scholar
  5. 5.
    Perlack, R. D. and Wright, L. L. (1995),Energy 20(4), 279–284.CrossRefGoogle Scholar
  6. 6.
    Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991),Biores. Technol. 35, 23–32.CrossRefGoogle Scholar
  7. 7.
    Brownell, H. H. and Saddler, J. N. (1987), inProceedings of the sixth Canadian Bioenergy R&D Seminar, February 16–18. Elsevier Applied Science, London.Google Scholar
  8. 8.
    Mok, W. S.-L. and Antal, M. J. (1992),Ind. Eng. Chem. Res. 31, 1157–1161.CrossRefGoogle Scholar
  9. 9.
    Torget, R., Hatzis, C., Hayward, T. K., Hsu, T., and Philippidis, G. P.Appl. Biochem. Biotechnol. 57/58, 85–101.Google Scholar
  10. 10.
    van Walsum, P., Allen, S. G., Laser, M. S., Spencer, M. J., Antal, M. J., and Lynd, L. R.Appl. Biochem. Biotechnol. 57/58, 157–170.Google Scholar
  11. 11.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Adv. Biotech. Biochem. Eng. 27, 37–84.Google Scholar
  12. 12.
    Maisch, W. F. (1987), inCorn: Chemistry and Technology, American Association of Cereal Chemists, Inc., St. Paul, MN, pp. 553–574.Google Scholar
  13. 13.
    Lynd, L. R., Grethlein, H. E., and Wolkin, R. H. (1989),Appl. Environ. Microbiol. 55, 3131–3139.Google Scholar
  14. 14.
    South, C. R., Hogsett, D. A., and Lynd, L. R. (1993),Appl. Biochem. Biotechnol. 39/40, 587–600.CrossRefGoogle Scholar
  15. 15.
    Hogsett, D. A. L. and Lynd, L. R., manuscript in preparation.Google Scholar
  16. 16.
    Hormeyer, H. F., Bonn, G., Kim, D. W., Bobleter, O., and Wood, J. (1987),Chem. Technol. 7(2), 269–283.Google Scholar
  17. 17.
    Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994),Enz. Microb. Technol. 16, 1002–1004.CrossRefGoogle Scholar
  18. 18.
    McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production (Himmel, M. E., Baker, J. O., and Overend, R. P., eds.), ACS Symposium Series 566, Washington, DC, pp. 411–437.Google Scholar
  19. 19.
    Baskaran, S., Ahn, H.-J., and Lynd, L.R.Biotechnol. Prog. 11, 276–281.Google Scholar
  20. 20.
    Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L. (1982),Appl. Environ. Microbiol. 43, 1125–1132.Google Scholar
  21. 21.
    Chen, Z. D. and Ho, N. W. Y. (1993),Appl. Biochem. Biotechnol. 39, 135–147.CrossRefGoogle Scholar
  22. 22.
    Zhang, M., Eddy, C., Deand, K., Finkelstein, M., and Picatagio, S. (1995),Science 267, 240–243.CrossRefGoogle Scholar
  23. 23.
    Larson, E. D. (1993),Annu. Rev. Energy Environ. 18, 567–630.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Lee R. Lynd
    • 1
    • 2
  • Richard T. Elamder
    • 3
  • Charles E. Wyman
    • 3
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Independence Biofuel, Inc.Meriden
  3. 3.National Renewable Energy LaboratoryGolden

Personalised recommendations