Recovery and purification of lactic acid from fermentation broth by adsorption

  • Roque L. Evangelista
  • Zivko L. Nikolov
Session 3 Bioprocessing Research


Riedel-de-Haen VI-15, Dowex MWA-1 and Amberlite IRA-35 were employed for lactic acid recovery using model fermentation broth. The broth was first acidified by using a cation exchanger before sorption of lactic acid onto the basic sorbents. Lactic acid was completely recovered from the VI-15 column after 7 bed volumes (BV) of methanol, whereas only 64% was recovered from MWA-1 after 4.5 BV and 18% from IRA-35 after 5 BV. The 5% NH4OH eluted all lactic acid from the MWA-1 column in 1.5 BV with a maximum effluent concentration of 113 mg/mL. The simple recovery scheme employed was not sufficient to produce heat-stable lactic acid. Other broth components were also adsorbed by the basic sorbents and could not be removed during the rinse step, but eluted with lactic acid during the desorption step.

Index Entries

Lactic acid recovery sorption ion exchange 


  1. 1.
    HRA Inc. (1991),Lactic Acid and Its Derivatives: A Global Review. HRA, Inc., Prairie Village, KS.Google Scholar
  2. 2.
    Lipinsky, E. S. and Sinclair, R. G. (1986),Chem. Eng. Prog. 82, 26–32.Google Scholar
  3. 3.
    asuda, S., Niwa, T., and Kurohara, T. (1984), Japanese Patent 59-118731.Google Scholar
  4. 4.
    Kiel, K. H., Greiner, U., Engelhardt, F., Kuhlein, K., Heb, G., Reinhold, K., and Schlingmann, M. (1985), German Patent DE 3328093.Google Scholar
  5. 5.
    Obara, H. (1988), Japanese Patent 63188632.Google Scholar
  6. 6.
    Collin, H. and Buresch, E. (1990), European Patent 0377430.Google Scholar
  7. 7.
    Kulprathipanja, S. and Oroskar, A. R. (1991), US Patent 5,068,418.Google Scholar
  8. 8.
    Rossiter, G. J. (1991), inPreparative and Process-Scale Liquid Chromatography, G. Subramanian, G., ed., Ellis Horwood, West Sussex, UK.Google Scholar
  9. 9.
    Ernst, E. E. and McQuigg, D. W. (1992), Paper presented at the AIChE Annual National Meeting, November, Miami Beach, FL.Google Scholar
  10. 10.
    King, C. J. and Tung, L. (1992), US Patent 5,132,456.Google Scholar
  11. 11.
    Yates, R. A. (1981), US Patent 4,282,323.Google Scholar
  12. 12.
    Srivastava, A., Roychoudhury, P. K., and Sahai, V. (1992),Biotechnol. Bioeng. 39, 607–613.CrossRefGoogle Scholar
  13. 13.
    Tsao, G. T., Lee, S. J., Tsai, G., Seo, J., McQuigg, D. W., Vorhies, S., and Iyer, G. (1993), International Patent Appl. PCT/US92/07738.Google Scholar
  14. 14.
    Vickroy, T. B. (1985), inComprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine, Moo-Young, M., ed., Pergamon, New York.Google Scholar
  15. 15.
    Tung, L. (1993), Report No. LBL-34669, Lawrence Berkeley Laboratory, University of California, Berkely, CA.Google Scholar
  16. 16.
    Kabawata, N., Yoshida, J., and Tanigawa, Y. (1981),Ind. Eng. Chem. Prod. Res. Dev. 20, 386–390.CrossRefGoogle Scholar
  17. 17.
    Frierman, M., Kuo, Y., Joshi, D., Garcia, A. A., and King, C. J. (1987),Sep. Purif. Methods. 16, 91–102.Google Scholar
  18. 18.
    Evangelista, R. L., Nikolov, Z. L., and Mangold, A. J. (1994),Appl. Biochem. Biotech. 45/46, 131–144.Google Scholar
  19. 19.
    Weast, R. C. (1987),Handbook of Chemistry and Physics, CRC, Boca Raton, FL, p. D-99.Google Scholar
  20. 20.
    Kuo, Y., Munson, C. L., Rixey, W. G., Garcia, A. A., Frierman, M., and King, C. J., (1987),Sep. Purif. Methods. 16, 31–64.CrossRefGoogle Scholar
  21. 21.
    Rohm and Haas (1988),Rohm and Haas Ion Exchange Resin Laboratory Guide, Philadelphia, PA.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Roque L. Evangelista
    • 1
  • Zivko L. Nikolov
    • 1
    • 2
  1. 1.Department of Food Science and Human NutritionIowa State UniversityAmes
  2. 2.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmes

Personalised recommendations