Skip to main content
Log in

Detailed material balance and ethanol yield calculations for the biomass-to-ethanol conversion process

  • Session 3 Bioprocessing Research
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Applying material balance calculations to the evaluation and optimization of lignocellulosic biomass conversion processes is fundamentally important. The lack of a general framework for material balance calculations and inconsistent compositional analysis data have made it difficult to compare results from different research groups. Material balance templates have been developed to follow accurately the distribution of carbon in lignocellulosic substrates through the pretreatment and simultaneous saccharification and fermentation (SSF) processes, and provide information on overall carbon recovery, recovery of individual sugars, and solubilization of biomass components. Based on material balance considerations, we developed equations that allow us to compute overall ethanol yields for biochemical conversion of biomass correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C-mol:

amount (mass) of a substance containing 1 mol of the element carbon (g)

[C5]:

concentration of pentose sugars in hydrolysate (g / L)

[C6]:

concentration of hexose sugars in hydrolysate (g/L)

dL :

density of liquor (SSF or hydrolysate) (g/L)

[E]:

ethanol concentration (g/L)

fs :

fraction of insoluble solids (g insoluble solids / g slurry)

Lf :

mass-loss factor of insoluble solids from pretreatment (g pretreated solids/g raw solids)

m:

mass of whole slurry (g)

mL :

mass of liquid phase (g)

ms :

mass of insoluble solids (g)

QC5 :

mass fraction of pentose sugars in raw substrate (g/g dry mass)

QC6 :

mass fraction of hexose sugars in raw substrate (g/g dry mass)

YE :

ethanol yield (g/100 g hexose sugar)

L:

liquid-phase composition or mass

max:

maximal potential yield

0:

raw substrate or beginning of SSF (t = 0)

p:

substrate or solids compositions after pretreatment

s:

solids composition or mass.

References

  1. Philippidis, G. P. and Wyman, C. E. (1992), inRecent Advances in Biotechnology, Vardar-Sukan, F. and Sukan, S. S., eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 405–411.

    Google Scholar 

  2. Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  3. Philippidis, G. P. (1994), inEnzymatic Conversion of Biomass for fuels Production, Himmel, M., Baker, J. O., and Overand, R. P., eds., American Chemical Society, Washington, DC, pp. 188–217.

    Google Scholar 

  4. Hinman, N. D., Schell, D. J., Riely, C. J., Bergeron, P., and Wyman, C. E. (1992),Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  5. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T., and Philippidis, G. P. (1996),Appl. Biochem. Biotech. 57/58, 85–101.

    Article  CAS  Google Scholar 

  6. Ghose, T. K. (1987),Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  7. McMillan, J. D. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M., Baker, J. O., and Overand, R. P., eds., American Chemical Society, Washington, DC, pp. 411–437.

    Google Scholar 

  8. Spindler, D. D., Wyman, C. E., Grohman, K., and Philippidis, G. P. (1992),Biotechnol. Lett. 14, 403–407.

    Article  CAS  Google Scholar 

  9. Ehrman, C. I. and Himmel, M. E. (1994),Biotechnol. Technique 8, 99–104.

    Article  CAS  Google Scholar 

  10. Chum. H. L., Douglas, L. J., Feinberg, D. A., and Schroeder, H. A. (1984),Evaluation of Pretreatments of Biomass for Enzymatic Hydrolysis of Cellulose. Solar Energy Research Institute, SERI/TR-231-2183.

  11. Dale, B. E. (1985),Ann. Rep. Fermentation Proc. 8, 299–323.

    CAS  Google Scholar 

  12. Chum, H. L. and Gellerstedt, G. (1991), Modern Methods of Analysis of Wood, Annual Plants and Lignins. Proc. IEA Pre-Symposium, New Orleans, LA.

  13. Hsu, T. and Nguyen, Q. (1995),Biotechnol. Techniques 9, 25–28.

    Article  CAS  Google Scholar 

  14. Fan, L. T., Lee, Y.-H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 157–187.

    CAS  Google Scholar 

  15. Saeman, J. F. (1945),Ind. Eng. Chem. 37, 43–52.

    Article  CAS  Google Scholar 

  16. Dunlop, A. P. (1948),Ind. Eng. Chem. 40, 204–209.

    Article  CAS  Google Scholar 

  17. McKibbins, S. W., Harris, J. F., Saeman, J. F., and Neill, W. K. (1962),Forest Prod. J. 12, 17–23.

    CAS  Google Scholar 

  18. Williams, D. L. and Dunlop, A. P. (1948),Ind. Eng. Chem. 40, 239–241.

    Article  CAS  Google Scholar 

  19. Sarkanen, K. V. and Ludwig, C. H. (1971),Lignins: Occurrence, Formation, Structure and Reactions. Wiley-Interscience, New York.

    Google Scholar 

  20. Feather, M. S. and Harris, J. F. (1973),Adv. Carbohydr. Chem. Biochem. 28, 161–224.

    Article  CAS  Google Scholar 

  21. Harris, J. F. (1975),Appl. Polymers Symp. 28, 131–144.

    CAS  Google Scholar 

  22. Root, D. F., Saeman, J. F., Harris, J. F., and Neill, W. K. (1959),Forest Prod. J. 9, 158–165.

    CAS  Google Scholar 

  23. Kadam, K. L., Hayward, T. K., and Philippidis, G. P. (1995),Solar Eng. 1, 339–347.

    Google Scholar 

  24. Gancedo, C. and Serrano, R. (1989), inThe Yeast, vol. 3, 2nd ed., Rose, A. H. and Harrison, J. S., eds., Academic, London, pp. 205–259.

    Google Scholar 

  25. Kennedy, M. J., Thakur, M. S., Wang, D. I. C., and Stephanopoulos, G. (1992),Biotechnol. Prog. 8, 375–381.

    Article  CAS  Google Scholar 

  26. Combs, N. and Hatzis, C. (1996),Appl. Biochem. Biotech. 57/58, 649–657.

    CAS  Google Scholar 

  27. Roels, J. A. (1983),Energetics and Kinetics in Biotechnology, Elsevier Biomedical, Amsterdam, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzis, C., Riley, C. & Philippidis, G.P. Detailed material balance and ethanol yield calculations for the biomass-to-ethanol conversion process. Appl Biochem Biotechnol 57, 443–459 (1996). https://doi.org/10.1007/BF02941725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941725

Index Entries

Navigation