Applied Biochemistry and Biotechnology

, Volume 57, Issue 1, pp 389–397 | Cite as

Cloning and expression of full-lengthTrichoderma reesi cellobiohydrolase I cDNAs inEscherichia coli

  • Robert A. Laymon
  • William S. Adney
  • Ali Mohagheghi
  • Michael E. Himmel
  • Steven R. Thomas
Session 2 Applied Biological Research


The process of converting lignocellulosic biomass to ethanol via fermentation depends on developing economic sources of cellulases.Trichoderma reesei cellobiohydrolase (CBH) I is a key enzyme in the fungal cellulase system; however, specific process application requirements make modification of the enzyme by site-directed mutagenesis (SDM) an attractive goal. To undertake SDM investigations, an efficient, cellulase-free host is required. To test the potential ofEscherichia coli as a host, T.reesei CBH I cDNA was expressed inE. coli strain GI 724 as a C-terminal fusion to thermostable thioredoxin protein. Full-length expression of CBH I was subsequently verified by molecular weight, Western blot analysis, and activity on soluble substrates.

Index entries

Cellobiohydrolase I (CBH I) T. reesei cellulases fusion proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wright, J. D., Power, A. J., and Douglas, L. J. (1986),Biotechnol. Bioeng. Symp. 17, 285–302.Google Scholar
  2. 2.
    Wright, J. D., Wyman, C. E., and Grohmann, K. (1988),Applied Biochem. Biotechnol. 17, 75–90.CrossRefGoogle Scholar
  3. 3.
    Wilke, C. R., Yan, R. D., and von Stockar, U. (1976),Biotechnol. Bioeng. Symp. 6, 55.Google Scholar
  4. 4.
    Teeri, T. T., Koivula, A., Reinikainen, T., Ruohonen, L., and Srisodsuk, M. (1994), Hydrolysis of crystalline cellulose by native and engineeredTrichoderma reesei Cellulases, Proceedings of the Symposium on Enzymic Degradation of Insoluble Polysaccharides, The 1994 Annual American Chemical Society Meeting, San Diego, CA.Google Scholar
  5. 5.
    Enari, T.-M. (1983), inMicrobial Enzymes and Biotechnology, Fogarty, W. M., ed., Applied Science, London, pp. 183–223.Google Scholar
  6. 6.
    Eveleigh, D. E. (1987),Phil. Trans. Royal Soc. Lond. A321, 435–447.CrossRefGoogle Scholar
  7. 7.
    Fägerstam, L. G. and Pettersson, L. G. (1980),FEBS Lett. 119, 97.CrossRefGoogle Scholar
  8. 8.
    Irwin, D. C., Spezio, M., Walker, L. P., and Wilson, D. B. (1993),Biotechnol. Bioeng. 42, 1002–1013.CrossRefGoogle Scholar
  9. 9.
    Thomas, S. R., Laymon, R. A., Chou, Y.-C., Tucker, M. P., Vinzant, T. B., Adney, W. S., Baker, J. O., Nieves, R. A., Mielenz, J. R., and Himmel, M. E. (1995), inAdvances in the Bioconversion of Lignocellulosics, Saddler, J. N., and Penner, M. N., eds., ACS Series 618, American Chemical Society, Washington, DC, in press.Google Scholar
  10. 10.
    Shoemaker, S. P. (1984), inThe Cellulase System of Trichoderma reesei: TrichodermaStrain Improvement and Expression of TrichodermaCellulases in Yeast, Online, Pinner, UK, pp. 593–600.Google Scholar
  11. 11.
    van Arsdell, J.N., Kwok, S., Schweickart, V.L., Ladner, M.B., Gelfand, D.H., and Innis, M.A. (1987),Bio/Technology 5, 60–64.CrossRefGoogle Scholar
  12. 12.
    Penttilä, M. E. (1987),Construction and Characterization of Cellulolytic Yeast, Publications No. 39, VTT, Biotechnical Laboratory, Espoo, Finland.Google Scholar
  13. 13.
    Penttilä, M. E., Andre, L., Lehtovaara, P., Bailey, M., Teeri, T. T., and Knowles, J. K. C. (1988),Gene 63, 103–112.CrossRefGoogle Scholar
  14. 14.
    Barnett, C. and Shoemaker, S. P. (1987), inFEMS Symposium, Biochemistry and Genetics of Cellulose Degradation, Paris, France, pp. 2–18.Google Scholar
  15. 15.
    Teeri, T. T., Jones, A., Kraulis, P., Rouvinen, J., Penttila, M., Harkki, A., Nevalainen, H., Vanhanen, S., Saloheimo, M., and Knowles, J. K. C. (1990), in Trichoderma reeseiCellulases, Kubicek, C. P., Eveleigh, D. E., Esterbauer, H., Steiner, W., and Kubicek-Pranz, E. M., eds., Royal Society of Chemistry, London, UK, pp. 156–167.Google Scholar
  16. 16.
    Tangnu, S. K., Blanch, H. W., and Wilke, C. R. (1981),Biotechnol. Bioeng. 23, 1837–1849.CrossRefGoogle Scholar
  17. 17.
    Shoemaker, S., Schweikart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M. (1983),Bio/Technology 1, 691–696.CrossRefGoogle Scholar
  18. 18.
    Marston, F. A. O. and Hartley, D. L. (1990),Methods Enzymol. 182, 264–276.CrossRefGoogle Scholar
  19. 19.
    Nieves, R. A., Himmel, M. E., and Ellis, R. P. (1990),Appl. Biochem. Biotechnol. 24/25, 397–406.CrossRefGoogle Scholar
  20. 20.
    Teeri, T. T. (1987), Publications No. 38, VTT, Biotechnical Laboratory, Espoo, Finland.Google Scholar
  21. 21.
    Salovuori, I. (1987), Construction and Characterization of Cellulolytic Yeast, Publications No. 34, VTT, Biotechnical Laboratory, Espoo, Finland.Google Scholar
  22. 22.
    Shoemaker, S., Watt, K., Tsitovsky, G., and Cox, R. (1983),Bio/Technology 1, 687–689.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Robert A. Laymon
    • 1
  • William S. Adney
    • 1
  • Ali Mohagheghi
    • 1
  • Michael E. Himmel
    • 1
  • Steven R. Thomas
    • 1
  1. 1.Applied Biological Sciences Branch, Alternative Fuels DivisionNational Renewable Energy LaboratoryGolden

Personalised recommendations