Advertisement

Factors contributing to the loss of ethanologenicity ofEscherichia coli B recombinants pL0I297 and KO11

  • Hugh G. Lawford
  • Joyce D. Rousseau
Session 2 Applied Biological Research

Abstract

To be economic and to be compatible with modern continuous bioconversion systems, it is imperative that the process organism exhibit an extremely high degree of stability. In the case of ethanol production from lignocellulosic biomass, functional stability of the potential process biocatalyst can be assessed in terms of the capacity to sustain high-performance fermentation during the continuous fermentation of biomass-derived sugars.

This investigation employed glucose- or xylose-limited chemostat culture to examine the functional stability of two patented, genetically engineeredE. coli—namelyE. coli B (ATCC 11303) carrying theZymomonas genes for pyruvate decarboxylase and alcohol dehydrogenase II on a multicopy plasmid pLOI297 and a chromosomalpet integrant of strain 11303, designated as strain KO11. Both recombinants carry markers for antibiotic resistance and have been reported to exhibit genetic stability in the absence of antibiotic selection.

Chemostats were fed with Luria broth (LB) (with 25 g/L sugar) at a dilution rate of 0.14 and 0.07/h when the feed medium was glucose-LB and xylose-LB, respectively. The pH was controlled at 6.3. With glucose, both recombinants exhibited a rapid loss of ethanologenicity even when selection pressure was imposed by the inclusion of antibiotics in the feed medium. With strain KO11, increasing the concentration of chloramphenicol from 40 to 300 mg/L, resulted in a retardation in the rate of loss of ethanologenicity, but it did not prevent it. Under xylose limitation, the plasmid-bearing recombinant appeared to be stabilized by antibiotics, but this did not reflect genetic stability, since the slower-growing revertant was washed out at a dilution rate of 0.07/h. With both recombinants, interpretation of functional stability with xylose was complicated by the inherent ethanologenicity associated with the host culture.

Based on an average cost for large bulk quantities of antibiotics at $55/kg and an amendment level of 40 g/m3, the estimated economic impact regarding the potential requirement for operational stabilization by antibiotics in a plant operating in batch mode varied from a maximum of 29¢/gal of E95 ethanol for antibiotic amendment of all fermentation media to a minimum of 0.45¢/gal where antibiotics were used exclusively for the preparation of the inocula for every fourth batch fermentation cycle. The high degree of instability observed in these continuous fermentations does not auger well for the proposed potential industrial utility of these patented, genetically engineered constructs for the production of fuel ethanol from biomass and wastes.

Index Entries

Ethanol xylose stability recombinantE. coli strain KO11 antibiotics pet operon 

References

  1. 1.
    Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.CrossRefGoogle Scholar
  2. 2.
    McMillan, J. D. (1994), inBioconversion for Fuels, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.Google Scholar
  3. 3.
    Timell, T. E. (1967),Wood Science Technol. 1, 45–70.CrossRefGoogle Scholar
  4. 4.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  5. 5.
    McMillan, J. D. (1993), Xylose fermentation to ethanol: a review; NREL TP-421-4944; National Renewable Energy Laboratory, Golden, CO.Google Scholar
  6. 6.
    Ingram, L. O., Conway, T., and Alterthum, F. (1991), United States Patent 5,000,000.Google Scholar
  7. 7.
    Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990), inDevelopments in Industrial Microbiology, vol. 31, Elsevier Science, New York, pp. 21–30.Google Scholar
  8. 8.
    Ingram, L. O. (1991), inEnergy from Biomass and Wastes XIV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 1105–1126.Google Scholar
  9. 9.
    Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1543–1948.Google Scholar
  10. 10.
    Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54, 397–404.Google Scholar
  11. 11.
    Brau, B. and Sahm, H. (1986),Arch. Microbiol. 144, 296–301.CrossRefGoogle Scholar
  12. 12.
    Neale, A. D., Scopes, R. K., Wettenhall, E. H., and Hoogenraad, N. J. (1987),J. Bacteriol. 169, 1024–1028.Google Scholar
  13. 13.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  14. 14.
    Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.CrossRefGoogle Scholar
  16. 16.
    Lawford, H. G. and Rousseau, J. D. (1993),Appl Biochem. Biotechnol. 39/40, 301–322.CrossRefGoogle Scholar
  17. 17.
    Lawford, H. G. and Rousseau, J. D. (1993),Biotechnol. Lett. 15, 615–620.CrossRefGoogle Scholar
  18. 18.
    Lawford, H.G. and Rousseau, J. D. (1991), inEnergy from Biomass & Wastes XV, Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 583–622.Google Scholar
  19. 19.
    Lawford, H. G. and Rousseau, J. D. (1991),Biotechnot. Lett. 13, 191–196.CrossRefGoogle Scholar
  20. 20.
    Lawford, H. G. and Rousseau, J. D. (1993), inEnergy from Biomass and Wastes XVI, Klass, D. L., ed., institute of Gas Technology, Chicago, IL, pp. 559–597.Google Scholar
  21. 21.
    Lawford, H. G. and Rousseau, J. D. (1993),Biotechnol. Lett. 15, 505–510.CrossRefGoogle Scholar
  22. 22.
    Lawford, H. G. and Rousseau, J. D. (1993),Appl. Biochem. Biotechnol. 39/40, 667–685.CrossRefGoogle Scholar
  23. 23.
    Lawford, H. G. and Rousseau, J. D. (1992),Biotechnol. Lett. 14, 421–426.CrossRefGoogle Scholar
  24. 24.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  25. 25.
    Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 162–167.Google Scholar
  26. 26.
    Sanbrook, J., Fritsch, E. F., and Maniatis, T. (1989),Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  27. 27.
    Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotech. Bioeng. 38, 296–303.CrossRefGoogle Scholar
  28. 28.
    Tolan, J. S. and Finn, R. K. (1987),Appl. Environ. Microbiol. 53, 2033–2038.Google Scholar
  29. 29.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  30. 30.
    DaSilva, N. A. and Bailey, J. E. (1986),Biotechnol. Bioeng. 28, 741–746.CrossRefGoogle Scholar
  31. 32.
    Lawford, H. G. and Rousseau, J. D. (1996),Appl. Biochem. Biotechnol. 57/58, 307–326.CrossRefGoogle Scholar
  32. 32.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  33. 33.
    Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., and Mohagheghi, A. (1994),Appl. Microbiol. Biotechnol. 41, 62–72.Google Scholar
  34. 34.
    von Sivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B. (1994),Biotechnol. Prog. 10, 555–560.CrossRefGoogle Scholar
  35. 35.
    Lawford, H. G. and Rousseau, J. D. (1995),Biotechnol. Lett. 17, 751–756.CrossRefGoogle Scholar
  36. 36.
    Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.Google Scholar
  37. 37.
    Lawford, H. G. and Rousseau, J. D. (1995),Appl. Biochem. Biotechnol. 51/52, 179–195.CrossRefGoogle Scholar
  38. 38.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.Google Scholar
  39. 39.
    Pirt, J. S. (1975), inPrinciples of Microbe and Cell Cultivation, Wiley, New York, pp. 200–202.Google Scholar
  40. 40.
    Bailey, J. E. and Ollis, D. F. (1977), inBiochemical Engineering Fundamentals, McGraw-Hill, New York, pp. 650–653.Google Scholar
  41. 41.
    Wood, B. E. and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 2103–2110.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations