Applied Biochemistry and Biotechnology

, Volume 57, Issue 1, pp 171–182 | Cite as

Pretreatment of sugar cane bagasse for enhanced ruminal digestion

  • Francisco C. Deschamps
  • Luiz P. Ramos
  • José D. Fontana
Session 1 Thermal, Chemical, and Biological Processing


Crop residues, such as sugar cane bagasse (SCB), have been largely used for cattle feeding However, the close association that exists among the three major plant cell-wall components, cellulose, hemicellulose, and lignin, limits the efficiency by which ruminants can degrade these materials Previously, we have shown that pretreatment with 3% (w/w) phosphoric acid, under relatively mild conditions, increased considerably the nutritional value of SCB. However, in this preliminary study, pretreated residues were not washed prior toin situ degradability assays because we wanted to explore the high initial solvability of low-mol-wt substances that were produced during pretreatment We have now studied the suitability of water- and/or alkali-washed residues toin situ ruminal digestion. Alkali washing increased substrate cellulose content by removing most of the lignin and other residual soluble substances As a result, the ruminal degradability of these cleaner materials had first-order rate constants five times higher than those substrates with higher lignin content (e.g., stem-exploded bagasse) However, alkali washing also increased the time of ruminal lag phase of the cellulosic residue, probably because of hemicellulose and / or lignin removal and to the development of substrates with higher degree of crystallinity. Therefore, longer lag phases appear to be related to low microbial adherence after extensive water and alkali extraction, as Novell as to the slower process of cellulase induction during ruminal growth. The kinetic data on ruminal digestion were shown to be very well adjusted by a nonlinear model. Although pretreatment enhances substrate accessibility, the occurrence of an exceedingly high amount of lignin byproducts within the pretreated material reduces considerably its potential degradability.

Index Entries

Sugar cane bagasse autohydrolysis phosphoric acid in situ degradability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akin, D. E. (1979),J. Anim. Sci. 48, 701–710.Google Scholar
  2. 2.
    Chesson, A. and Forsberg, C. W. (1988), inThe rumen microbial ecosystem, Hobson, P. N., ed., Elsevier, New York, pp. 251–284.Google Scholar
  3. 3.
    Kerley, M. S., Fahey, G. C., Gould, J. M., and Ianotti, E. L. (1988),Food Microstruct. 7, 59–65.Google Scholar
  4. 7.
    Lamed, R. and Bayer, E. A. (1988),Adv. Appl. Microbiol. 33, 1–46.CrossRefGoogle Scholar
  5. 5.
    Leatherwood, J. M. (1973),Fed. Proc. 32, 1815–1819.Google Scholar
  6. 6.
    Cheng, K. J. and Costerton, J. W. (1980), inDigestive Physiology and Metabolism in Ruminants, Ruckebush, Y. and Thivend, P., ed., AVI, Wesport, pp. 227–250.Google Scholar
  7. 7.
    McGavin, M. and Forsberg, C. W. (1989),J. Bacteriol. 17, 3310–3315.Google Scholar
  8. 8.
    Gilbert, H. J., Hall, J., Hazlewood, G. P., and Ferreira, L. M. A. (1990),Mo. Microbiol. 4, 759–767.CrossRefGoogle Scholar
  9. 9.
    Weimer, P. J. (1993), inForage Cell Wall Stucture and Digestibility, Jung, H. G., Buxton, D. R., Hatfield, R. D., and Ralph, J., eds., Madison, WI, pp. 485–498.Google Scholar
  10. 10.
    Fontana, J. D., Correa, J. B. C., Duarte, J. H., Barbosa, A. M., and Blumel, M. (1984),Biotechnol. Bioeng. Symp. 14, 175–184.Google Scholar
  11. 11.
    Fontana, J. D., Ramos, L. P., and Deschamps, F. C. (1995),Appl. Biochem. Biotechnol. 51/52, 105–116.CrossRefGoogle Scholar
  12. 12.
    Playne, M. J. (1984),Biotechnol. Bioeng. 26, 426–433.CrossRefGoogle Scholar
  13. 13.
    Brownell, H. H. and Saddler, J. N. (1987),Biotechnol. Bioeng. 29, 228–235.CrossRefGoogle Scholar
  14. 14.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992),Appl. Biochem. Biotechnol. 34/35, 37–48.CrossRefGoogle Scholar
  15. 15.
    Saddler, J. N., Ramos, L. P., and Breuil, C. (1993), inBioconversion of Forest and Agricultural Plant Wastes, Saddler, J. N. ed., C. A. B. International, London, pp. 73–92.Google Scholar
  16. 16.
    Rolz, C., de Arnola, M. C., Valladares, J., and de Cabrera, S. (1987),Process Biochem. 23, 17–23.Google Scholar
  17. 17.
    Van Soest, P. J. (1967),J. Anim. Sci. 26, 119–128.Google Scholar
  18. 18.
    Crampton, E. W. and Maynard, L. A. (1938),J. Nutr. 15, 383–395.Google Scholar
  19. 19.
    Keller, R. J. (1986), The Sigma Library of FT-tR Spectra, Sigma, St. Louis, MO.Google Scholar
  20. 20.
    Reeves, J. B., III (1993),Vibrational Spectroscopy 5, 303–310.CrossRefGoogle Scholar
  21. 21.
    Ramos, L. P., Nazhad, M. M., and Saddler, J. N. (1993),Enzyme Microb. Technol. 15, 821–831.CrossRefGoogle Scholar
  22. 22.
    Segal, L., Creely, J. J. Martin, A. E., Jr., and Conrad, C. M. (1959),Textile Res. J.27, 30–41.Google Scholar
  23. 23.
    Orskov, E. R. and McDonald, I. (1979),J. Agricultural Sci. 92, 449–453.CrossRefGoogle Scholar
  24. 24.
    Mertens, D. R. (1977),Fed. Proc. 36, 187–192.Google Scholar
  25. 25.
    Weimer, P. J., Guisa-Lopez, J. M., and French, A. D. (1990),Appl. Environ. Microbiol. 56, 2421–2429.Google Scholar
  26. 26.
    Bacic, A., Harris, P. J., and Stone, B. A. (1988), inThe Biochemistry of Plants, vol. 14, Preiss, J., ed., Academic, New York, pp. 297–371.Google Scholar
  27. 27.
    Donaldson, L. A., Wong, K. K. Y., and Mackie, K. L. (1988),Wood Sci. Technol. 22, 103–114.CrossRefGoogle Scholar
  28. 28.
    Wong, K. K. Y., Deverell, K. F., Mackie, K. L., Clark, T. A., and Donaldson, L. A. (1988),Biotechnol. Bioeng. 31, 447–456.CrossRefGoogle Scholar
  29. 29.
    Toussain, B., Excoffier, G., and Vignon, M. R. (1991),Animal Feed Sci. Technol. 32, 235–242.CrossRefGoogle Scholar
  30. 30.
    Smith, W. R., Yu, I., and Hungate, R. E. (1973),J. Bacteriol. 114, 729–737.Google Scholar
  31. 31.
    Beveridge, R. J. and Richards, G. N. (1975),Carbohydr. Res. 43, 163–172.CrossRefGoogle Scholar
  32. 32.
    Russel, J. B. and Baldwin, R. L. (1978),Appl. Environ. Microhiol. 36, 319–329.Google Scholar
  33. 33.
    Roger, V., Fonty, G., Komisarczuk-Bony, S., and Gouet, P. (1990),Appl. Environ. Microbiol. 56, 3081–3087.Google Scholar
  34. 34.
    Huang, L. and Forsberg, C. W. (1990),Appl. Environ. Microbiol. 56, 1221–1228.Google Scholar
  35. 35.
    Chesson, A., Stewart, C. S., and Wallace, R. J. (1982),Appl. Environ. Microbiol. 44, 497–603.Google Scholar
  36. 36.
    Varel, V. H. and Jung, H. G. (1986),Appl. Environ. Microbiol. 52, 275–280.Google Scholar
  37. 37.
    Akin, D. E., Rigsby, L. L., Theodorou, M. K., and Hartley, R. D. (1988),Anim. Feed Sci. Technol. 19, 261–275.CrossRefGoogle Scholar
  38. 38.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1992),Enzyme Microb. Technol. 15, 19–25.CrossRefGoogle Scholar
  39. 39.
    Hatfield, R. D. (1993) inForage Cell Wall Structure and Digestibility, Jung, H. G., Buxton, D. R., Hatfield, R. D., and Ralph, J., eds., American Society of Agronomy, Madison, WI, pp. 285–313.Google Scholar
  40. 40.
    Sinitsyn, A. P., Gusakov, A. V., Vlasenko, E. Y. (1991),Appl. Biochem. Biotechnol. 30, 43–59.CrossRefGoogle Scholar
  41. 41.
    Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1987),Cellulose Hydrolysis. Springer-Verlag, Berlin.Google Scholar
  42. 42.
    Grethlein, H. E. (1985),Bio/Technology 3, 155–160.CrossRefGoogle Scholar
  43. 43.
    Stone, J., Scallan, A., Donefer, E., and Ahlgren, E. (1969),Adv. Chem. Ser. 95, 219–241.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Francisco C. Deschamps
    • 1
  • Luiz P. Ramos
    • 2
  • José D. Fontana
    • 3
  1. 1.Empresa de Pesquisa e Extensão Agropecuáría, EPAGRIItajai, SCBrazil
  2. 2.Department of ChemistryFederal University of ParanáCuritiba; ParanáBrazil
  3. 3.Department of Biochemistry, LQBBFederal University of ParanáCuritiba; ParanáBrazil

Personalised recommendations