Skip to main content
Log in

Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol

  • Session 1 Thermal, Chemical, and Biological Processing
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A reverse-flow, two-temperature dilute-acid prehydrolysis process of commercial yellow poplar sawdust using two percolation reactors was designed to simulate countercurrent flow of the biomass solids and prehydrolysis liquor, and to exploit the xylan biphasic kinetics. Lower temperatures (150–174°C) are initially applied to hydrolyze the easily hydrolyzable xylan, and higher temperatures (180–204°C) are applied to hydrolyze the remaining xylan. Two reactors were used to optimize each temperature range, using varying concentrations of sulfuric acid from 0.073–0.73 wt% and reaction times. Yields of soluble xylose, as high as 97% of theoretical, expressed as monomeric and oligomeric xylose, have been achieved with only 2.9% of the xylan being degraded to furfural, at concentrations of total potential sugar between 2.4 and 3.7 wt% before flashing. Depending on the combined severity of the acid concentration, residence time of the solids and liquor, and temperature of prehydrolysis, 81–100% of the hemicellulose, 3–32% of the glucans, and up to 46% of the Klason lignin could be solubilized. The lignocellulosic substrate produced from the pretreatment is readily converted to ethanol at a yield of approx 91% of theoretical, with ethanol concentrations of up to 4.0 wt% in 55 h via a simultaneous saccharification and fermentation (SSF) process. In terms of xylose recovery and ethanol production level and rate, the present results are far superior to those previously reported using a single-temperature, dilute-acid pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 735–753.

  2. Wyman, C. E. (1993),Proc. 1st Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, Burlington, VT, August 30–September 2, 1010–1031.

  3. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 131.

    Article  Google Scholar 

  4. Grohmann, K., Torget, R., and Himmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  5. Grohmann, K., Torget, R., and Himmel, M. (1986),Biotechnol. Bioeng. Symp. 17, 135–151.

    CAS  Google Scholar 

  6. Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990),Appl. Biochem. Biotechnol. 24, 115–126.

    Article  Google Scholar 

  7. Torget, R., Walter, P., Himmel, M., and Grohman, K. (1991),Appl. Biochem. Biotechnol. 28/29, 75–86.

    Article  Google Scholar 

  8. Torget, R., Himmel, M., and Grohman, K. (1992),Appl. Biochem. Biotechnol. 34/35, 115–123.

    Article  Google Scholar 

  9. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984),Biotechnol. Bioeng. Symp. 14, 137–157.

    CAS  Google Scholar 

  10. Torget, R. (1985), MS thesis, Colorado School of Mines, Golden, CO.

    Google Scholar 

  11. Torget, R. and Hsu, T. (1994),Appl. Biochem. Biotechnol. 45/46, 5–22.

    Article  Google Scholar 

  12. Springer, E. L., Harris, J. F., and Neill, W. K. (1963),TAPPI 46, 551–555.

    CAS  Google Scholar 

  13. Springer, E. L. and Zoch, L. L. (1968),TAPPI 51, 214–218.

    CAS  Google Scholar 

  14. Kobayashi, T. and Sakai, Y. (1956),Bull. Agr. Chem. Soc. Jpn 20, 1–7.

    CAS  Google Scholar 

  15. Maloney, M. T., Chapman, T. W., and Baker, A. J. (1985),Biotechnol. Bioeng. 27, 355–361.

    Article  CAS  Google Scholar 

  16. Conner, A. H. (1984),Wood Fiber Sci. 16, 268–277.

    CAS  Google Scholar 

  17. Carrasco, F. and Roy, C. (1992),Wood Sci. Technol. 26, 189–208.

    CAS  Google Scholar 

  18. Wright, J. D., Bergeron, P. W. and Werdene, P. J. (1987),Ind. Eng. Chem. Res. 26, 699–705.

    Article  CAS  Google Scholar 

  19. Grohmann, K. and Torget, R. W. (1992), US Patent #5,125,977.

  20. Torget, R., Hsu, T., Kim, B. J., and Lee, Y. Y. (1992), AICHE National Meeting, Miami, FL.

  21. Ghose, T. K. (1987),Pure Appl. Chem. 59, 257–268.

    Article  CAS  Google Scholar 

  22. Spindler, D. D., Wyman, C. E., Grohmann, K. and Philippidis, G. P. (1992),Biotech. Lett. 14, 403–407.

    Article  CAS  Google Scholar 

  23. Official Test Methods (1983), Atlanta, GA.

  24. Moore, W. E. and Johnson, D. B. (1967),Procedures for the Chemical Analysis of Wood and Wood Products, USDA Forest Products Laboratory, Madison, WI.

    Google Scholar 

  25. Technical Association of the Pulp and Paper Industry Standard Method T 250,TAPPI, Acid-Soluble Lignin in Wood and Pulp.

  26. Torget, R., Himmel, M., Wright, J., and Grohmann, K. (1988),Appl. Biochem. Biotechnol. 17, 89–104.

    Article  CAS  Google Scholar 

  27. Hayward, T. K. (1995), personal communication, NREL, Golden, CO.

  28. Philippidis, G., and Smith, T. K. (1995),Appl. Biochem. Biotechnol. (in press).

  29. Kim, B. J., Lee, Y. Y., and Torget, R. (1994),Appl. Biochem. Biotechnol. 45/46, 113–129.

    Google Scholar 

  30. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992),Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  31. Schell, D. J. and Harwood, C. (1994),Appl. Biochem. Biotechnol. 45/46, 159–168.

    Google Scholar 

  32. Kraev, L. N. and Lorolkov, I. I. (1968), Sb Tr Vses Nauchno-Issled Inst Gidroliza Rastit Mater.17, 13–25.

    CAS  Google Scholar 

  33. Kim, B.J., Lee, Y. Y., and Torget, R. (1993),Appl. Biochem. Biotechnol. 39/40, 119–129.

    Article  Google Scholar 

  34. Smook, G. A. (1992),Handbook for Pulp and Paper Technologist, 2nd ed., p. 30.

  35. Zarauyika, M. F., Moses, P., and Mavunganidze, T. (1990),J. Polymer Sci. Part A Polym. Chem. 28, 3565–3574.

    Article  Google Scholar 

  36. Chum, C. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990),Appl. Biochem. Biotechnol. 24/25, 1–14.

    Article  Google Scholar 

  37. Conner, A. H., Wood, B. F., Hill, C. G., Jr., and Harris, J. F. (1985),J. Wood Chem. Technol. 5(4), 461–489.

    Article  CAS  Google Scholar 

  38. Mok, W. S. and Antal, M. J., Jr. (1992),Ind. Eng. Chem. Res. 31(4), 1157–1161.

    Article  CAS  Google Scholar 

  39. Cole, M. (1958),Nature 181, 1596.

    Article  CAS  Google Scholar 

  40. Burchhardt, G. and Ingram, L. O. (1992),Appl. Environ. Microb. 58, 1128–1133.

    CAS  Google Scholar 

  41. Takahashi, D. F., Carvalhal, M. L., and Alterthum, F. (1994),Biotechnol. Lett. 16, 747–750.

    Article  CAS  Google Scholar 

  42. Grethlein, H. E. (1985),Bio. Technology 3, 155–160.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torget, R., Hatzis, C., Hayward, T.K. et al. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol. Appl Biochem Biotechnol 57, 85–101 (1996). https://doi.org/10.1007/BF02941691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941691

Index Entries

Navigation