Automorphisms of spine spaces

  • K. Prażmowski
  • M. Zynel


Automorphisms of non-trivial spine spaces are either, type-preserving, or type-exchanging, that is, they map stars onto stars or exchange them with tops. In the first case they are given by semi-linear bijections, in the latter, by sesqui-linear forms.

Key words and phrases

projective space slit space spine space automorphism 


  1. [1]
    E. Artin,Geometric Algebra. Interscience, 1957.Google Scholar
  2. [2]
    W. Benz,Geometrishe Transformationen. B. I. Wiessenschaftsverlag, 1992.Google Scholar
  3. [3]
    A. BicharaandG. Tallini, On a characterization of Grassmann space representing theh -dimensional subspaces in a projective space.Annals of Discrete Math. 181983, 113-132.Google Scholar
  4. [4]
    A. Blunck andH. Havlicek, Affine spaces within projective spaces.Results Math. 36, 3–4 (1999), 237–251.MATHMathSciNetGoogle Scholar
  5. [5]
    H. Brauner, Über die von Kollineationen projektiver Räume induzierten Geradenabbildungen.Sitz. Ber. österr. Akad. Wiss., math.-naturw. Kl. Abt. II 197 (1998), 327–332.MathSciNetGoogle Scholar
  6. [6]
    J. Dieudonné,La géométrie des groupes classiques. Springer-Verlag, 1971.Google Scholar
  7. [7]
    H. Havlicek, Isomorphisms of affine Plücker spaces. In Proc. of the 4th International Conference of Geometry Thessaloniki 1996,N. K. Artémiads andN. K. Stephanidis (eds.), Aristoteles University of Thessaloniki, 1997, pp. 171–178.Google Scholar
  8. [8]
    ——, Chow’s theorem for linear spaces.Discrete Mathematics 208/209 (1999), 319–324.CrossRefMathSciNetGoogle Scholar
  9. [9]
    W. V. D. Hodge andD. Pedoe,Methods of algebraic geometry, vol. II. Cambridge University Press, 1968.Google Scholar
  10. [10]
    W.-L. Huang, Adjacency preserving transformations of Grassmann spaces.Abh. Math. Sem. Univ. Hamb. 68 (1998), 65–77.MATHCrossRefGoogle Scholar
  11. [11]
    H. Karzel andH. Meissner, Geschütze Inzidenzgruppen und normale Fastmoduln.Abh. Math. Sem. Univ. Hamb. 31 (1967), 69–88.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    H. Karzel andI. Pieper, Bericht über geschlitzte inzidenzgruppen.Jber. Deutsch. Math-Verein. 70 (1970), 70–114.Google Scholar
  13. [13]
    I. R. Porteous,Topological geometry. Cambridge University Press, 1981.Google Scholar
  14. [14]
    K. Prażmowski On a construction of affine grassmannians and spine spaces.J. Geom. 72 (2001), 172–187.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    K. Prażmowski andM. Żynel, Geometry of the structure of linear complements. To appear inJ. Geom. Google Scholar
  16. [16]
    G. Tallini, Partial line spaces and algebraic varieties.Symp. Math. 28 (1986), 203–217.MathSciNetGoogle Scholar
  17. [17]
    M. Żynel, Subspaces and embeddings of spaces of pencils. Submitted toRend. Sem. Mat. Messina. Google Scholar
  18. [18]
    M. Żynel, Finite grassmannian geometries.Demonstratio Math. XXXIV 1 (2001), 145–160.Google Scholar

Copyright information

© Mathematische Seminar 2002

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland

Personalised recommendations