Advertisement

On the stability of the quadratic mapping in normed spaces

  • St. Czerwik
Article

Abstract

The problem of the stability of the quadratic functional equation (including ULAM-HYERS and RASSIAS types of stability) in normed spaces is investigated.

AMS (1980) subject classification

Primary 39C05 

Key words and phrases

the stability of functional equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.W. Cholewa, Remarks on the Stability of Functional Equations, Aequationes Mathematicae27 (1984), 76–86.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Z. Gajda, On the Stability of the Linear Mapping (to appear).Google Scholar
  3. [3]
    D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. USA27 (1941), 222–224.CrossRefMathSciNetGoogle Scholar
  4. [4]
    D.H. Hyers, M. Ulam, Approximately Convex Functions, Proc. Amer. Math. Soc.3 (1952), 821–828.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Kurepa, On the Quadratic Functional, Publ. Inst. Math. Acad. Serbe Sci. Beograd13 (1959), 57–72.MATHMathSciNetGoogle Scholar
  6. [6]
    T.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc.72 (2) (1978), 297–300.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S.M. Ulam, A Collection of Mathematical Problems, Interscience Publishers Inc. New York 1960.MATHGoogle Scholar

Copyright information

© Mathematische Seminar 1992

Authors and Affiliations

  • St. Czerwik
    • 1
  1. 1.Institute of MathematicsSilesian University of TechnologyGliwicePoland

Personalised recommendations