Advertisement

Characterizing lineations defined on open subsets of projective spaces over ordered division rings

  • A. Brezuleanu
  • D. C. Radulescu
Article
  • 18 Downloads

Keywords

Reference Frame Natural Number Open Subset Projective Space General Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    E. Artin, O. Schreier, Algebraische Konstruktion reeller Körper, Abhandlungen des Mathematischen Seminars der hamburgischen Universität,5 (1927), 85–99.CrossRefGoogle Scholar
  2. [2]
    A. Brezuleanu,D. C. Dadulescu, About the collineations on open subsets ofR m andP m(R). Preprint series in Mathematics nr. 71/1981, INCREST, Bucharest.Google Scholar
  3. [3]
    A. Brezuleanu, D. C. Dadulescu, About full or infective lineations. J. of Geometry, Vol.23 (1984), 45–60.MATHCrossRefGoogle Scholar
  4. [4]
    D. S. Carter, A. Vogt, Collinearity preserving functions between projective Desarguesian planes. Memoirs AMS, vol.27, Nr. 235, Sept. 1980, 1–43.MathSciNetGoogle Scholar
  5. [5]
    N. Jacobson, Lectures in Abstract Algebra, III, Theory of Fields and Galois Theory. Springer-Verlag, GTM 32.Google Scholar
  6. [6]
    W. Klingenberg, Projektive Geometrien mit Homomorphismus. Math. Ann.132 (1956), 180–200.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    F. Radó, Darstellung nicht-injektiver Kollineationen eines projektiven Raumes durch verallgemeinerte semilineare Abbildungen. Math. Zeit.,110 (1969), 153–170.MATHCrossRefGoogle Scholar
  8. [8]
    F. Radó, Non-injective collineations on some sets in Desarguesian projective planes and extension on non-commutative valuations. Aequations Math.4 (1970), 307–321.MATHCrossRefGoogle Scholar
  9. [9]
    H. Schaeffer, Über eine Verallgemeinerung des Fundamentalsatzes in desargues-schen affinen Ebenen. Beiträge zur Geometrie u. Algebra, Nr.6 (1980), 36–41.Google Scholar

Copyright information

© Mathematische Seminar 1985

Authors and Affiliations

  • A. Brezuleanu
    • 1
  • D. C. Radulescu
    • 2
  1. 1.Institute of MathematicsAcademiei 14Romania
  2. 2.Polytechnical Institute of BucharestBucharestRomania

Personalised recommendations