Existence of solutions of the classical yang- baxter equation for a real lie Algebra

  • J. Feldvoss


We characterize finite-dimensional Lie algebras over the real numbers for which the classical Yang-Baxter equation has a non-trivial skew-symmetric solution (resp. a non-trivial solution with invariant symmetric part). Equivalently, we obtain a characterization of those finite-dimensional real Lie algebras which admit a non-trivial (quasi-) triangular Lie bialgebra structure.

Key words and phrases

Classical Yang-Baxter equation classicalr-matrix (quasi-) triangular Lie bialgebra structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Belavin andV. G. Drinfel’D, Solutions of the classical Yang-Baxter equation for simple Lie algebras,Fund. Anal. Appl. 16 (1982), 159–180.CrossRefMathSciNetGoogle Scholar
  2. [2]
    V. Chari andA. Pressley,A Guide to Quantum Groups, 1st paperback ed., with corrections, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  3. [3] Smedt Existence of a Lie bialgebra structure on every Lie algebra,Lett. Math. Phys. 31 (1994), 225–231.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    V. G. Drinfel’d, Quantum groups, in:Proc. Internat. Congr. Math., Berkeley, 1986 (ed.A. M. Gleason), Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.Google Scholar
  5. [5]
    J. Feldvoss, Existence of triangular Lie bialgebra structures,J. Pure Appl. Algebra 134 (1999), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    W. Michaelis, Lie coalgebras,Adv. Math. 38 (1980), 1–54.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    —, A class of infinite-dimensional Lie bialgebras containing the Virasoro algebra,Adv. Math. 107 (1994), 365–392.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 2001

Authors and Affiliations

  • J. Feldvoss
    • 1
  1. 1.Jörg FeldvossNahrendorfGermany

Personalised recommendations