Transitivity on ordered pairs of lines in finite linear spaces

  • Anne Delandtsheer


Automorphism Group Affine Space Affine Plane Steiner System Line Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J. Andre, Projektive Ebenen über Festkörper. Math. Z.62, 137–160 (1955).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F. Buekenhout, On 2-designs whose group of automorphisms is transitive on the ordered pairs of intersecting lines. J. London Math. Soc. (2),5, 663–672 (1972).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Dembowski, Finite Geometries. Springer: Berlin–Heidelberg–New York 1968.MATHGoogle Scholar
  4. [4]
    C. Hering, Eine nicht-desarguessche zweifach transitive affine Ebene der Ordnung 27. Abh. Math. Sem. Univ. Hamburg34, 203–208 (1969).MathSciNetCrossRefGoogle Scholar
  5. [5]
    W. M. Kantor, On 2-transitive groups in which the stabilizer of two points fixes additional points. J. London Math. Soc.5, 114–122 (1972).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    W. M. Kantor, Automorphism groups of designs. Math. Z.109, 246–252 (1969).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. M. Kantor, Homogeneous designs and geometric lattices. To appear in J. Combinatorial Theory.Google Scholar
  8. [8]
    H. Lüneburg, Some remarks concerning the Ree groups of type (G 2). J. of Algebra3, 256–259 (1966).MATHCrossRefGoogle Scholar
  9. [9]
    M. O’nan, Automorphisms of unitary block designs. J. of Algebra20, 495–511 (1972).MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    T. G. Ostrom, A. Wagner, On projective and affine planes with transitive collineation groups. Math. Z.71, 186–199 (1959).MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. Ree, A family of simple groups associated with the simple Lie algebra of (G 2). American J. Math.83, 432–462 (1961).MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    E. E. Shult, Permutation groups with few fixed points. In: Geometry-Von Staudt’s Point of View (eds P. Plaumann and K. Strambach). D. Reidel Pub. Co. Dordrecht, 1981, pp. 275–311.Google Scholar
  13. [13]
    D. E. Taylor, Unitary block designs. J. Combin. Theory (A)16, 51–56 (1974).MATHCrossRefGoogle Scholar
  14. [14]
    J. Tits, Automorphisms of unitals. Unpublished manuscript.Google Scholar
  15. [15]
    C. Hering, to appear in the Proceedings of the Winnipeg Conference on Finite Geometries (July 1984).Google Scholar

Copyright information

© Mathematische Seminar 1984

Authors and Affiliations

  • Anne Delandtsheer
    • 1
  1. 1.Départment de MathématiqueUniversité Libre de BruxellesBvd du TriompheBelgium

Personalised recommendations