Advertisement

On poincaré series of exponential type on sp2

  • W. Kohnen
Article

Keywords

Modular Form Fourier Coefficient Cusp Form Exponential Type Meromorphic Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. BÖcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. Math. Z.183 (1983), 21–46.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. BÖcherer, Letter to the author (1991).Google Scholar
  3. [3]
    U. Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen. Math. Ann.148 (1962), 257–307.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Eichler andD. Zagier, The Theory of Jacobi Forms. Progress in Math.55, Birkhäuser, Basel-Boston-Stuttgart 1985.Google Scholar
  5. [5]
    B. Gross, W. Kohnen andD. Zagier, Heegner Points and Derivatives of L-series II. Math. Ann.278 (1987), 497–562.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    F. Hirzebruch andD. Zagier, Intersection Numbers of Curves on Hilbert Modular Surfaces and Modular Forms of Nebentypus. Invent. Math.36 (1976), 57–113.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Klingen, Introductory Lectures on Siegel Modular Forms. Cambridge University Press 1990.Google Scholar
  8. [8]
    W. Kohnen, Cusp Forms and Special Values of Certain Dirichlet Series. Math. Z.207 (1991), 657–660.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    W. Kohnen, Estimates for Fourier Coefficients of Siegel Cusp Forms of Degree Two. To appear in Comp. Math.Google Scholar
  10. [10]
    W. Kohnen, Estimates for Fourier Coefficients of Siegel Cusp Forms of Degree Two II. Nagoya Math. J.128 (1992), 171–176.MATHMathSciNetGoogle Scholar
  11. [11]
    H. Maass, Über die Darstellung von Modulformenn-ten Grades durch Poincarésche Reihen. Math. Ann.123 (1951), 125–151.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1993

Authors and Affiliations

  • W. Kohnen
    • 1
  1. 1.Max-Planck-Institut für MathematikW-53OO Bonn 3Germany

Personalised recommendations