Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. BÖcherer, Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. Math. Z.183 (1983), 21–46.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. BÖcherer, Letter to the author (1991).

  3. U. Christian, Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen. Math. Ann.148 (1962), 257–307.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Eichler andD. Zagier, The Theory of Jacobi Forms. Progress in Math.55, Birkhäuser, Basel-Boston-Stuttgart 1985.

    Google Scholar 

  5. B. Gross, W. Kohnen andD. Zagier, Heegner Points and Derivatives of L-series II. Math. Ann.278 (1987), 497–562.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Hirzebruch andD. Zagier, Intersection Numbers of Curves on Hilbert Modular Surfaces and Modular Forms of Nebentypus. Invent. Math.36 (1976), 57–113.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Klingen, Introductory Lectures on Siegel Modular Forms. Cambridge University Press 1990.

  8. W. Kohnen, Cusp Forms and Special Values of Certain Dirichlet Series. Math. Z.207 (1991), 657–660.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Kohnen, Estimates for Fourier Coefficients of Siegel Cusp Forms of Degree Two. To appear in Comp. Math.

  10. W. Kohnen, Estimates for Fourier Coefficients of Siegel Cusp Forms of Degree Two II. Nagoya Math. J.128 (1992), 171–176.

    MATH  MathSciNet  Google Scholar 

  11. H. Maass, Über die Darstellung von Modulformenn-ten Grades durch Poincarésche Reihen. Math. Ann.123 (1951), 125–151.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohnen, W. On poincaré series of exponential type on sp2 . Abh.Math.Semin.Univ.Hambg. 63, 283–297 (1993). https://doi.org/10.1007/BF02941348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941348

Keywords

Navigation