A method for exact calculation of the discrepancy of low-dimensional finite point sets I

  • P. Bundschuh
  • Y. Zhu


In the present paper the formulas of exactly calculating the discrepancy of 2-and 3-dimensional finite point sets are explicitly given only in terms of the components of points.


Exact Calculation Finite Sequence Elementary Operation Finite Point Multidimensional Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. De Clerck, A Method for Exact Calculation of the Star-discrepancy of Plane Sets Applied to the Sequences of Hammersley. Mh. Math.101 (1986), 261–278.MATHCrossRefGoogle Scholar
  2. [2]
    L.K. Hua andY. Wang, Applications of Number Theory to Numerical Analysis. Springer-Verlag New York 1981.MATHGoogle Scholar
  3. [3]
    L. Kuipers andH. Niederreiter, Uniform Distribution of Sequences. John Wiley & Sons Inc. New York 1974.MATHGoogle Scholar
  4. [4]
    H. Niederreiter, Methods for Estimating Discrepancy. In: Applications of Number Theory to Numerical Analysis (ed. by S.K. Zaremba). Academic Press New York-London 1972.Google Scholar
  5. [5]
    H. Niederreiter, Discrepancy and Convex Programming. Ann. Mat. Pura Appl.93 (1972), 89–97.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Niederreiter, Quasi-Monte Carlo Methods and Pseudo-random Numbers. Bull. AMS84 (1978), 957–1041.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.E.H. Shaw, A Quasirandom Approach to Integration in Bayesian Statistics. Ann. Statistics16 (1988), 895–914.MATHCrossRefGoogle Scholar
  8. [8]
    Y. Wang andK. Fan, Number Theoretic Method in Applied Statistics I, II. Chin. Ann. Math.11B (1990), 51–65, 384-394.Google Scholar

Copyright information

© Mathematische Seminar 1993

Authors and Affiliations

  • P. Bundschuh
    • 1
  • Y. Zhu
    • 2
  1. 1.Mathematisches Institut der Universität zu KölnW-5000 Köln 41Germany
  2. 2.Academia SinicaInstitute of Applied MathematicsBeijing 100080China

Personalised recommendations