Separation-Preserving Transformations of De Sitter Spacetime

  • J. A. Lester


Conformal Transformation Conformal Space Null Vector Coordinate Vector Positive Scalar Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. D. Alexandrov, A Contribution to Chronogeometry, Can. J. Math.19, 1119 to 1128 (1967).MathSciNetGoogle Scholar
  2. [2]
    W. Benz, A Characterization of Plane Lorentz Transformations, J. Geom.10, 45–55 (1977).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    —, Zur Charakterisierung der Lorentztransformationen, J. Geometry9, 29–37 (1977).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    —, A Beckman-Quarles-Type Theorem for plane Lorentz Transformations, Math. Zeitschrift177, 101–106 (1981).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    —, Eine Beckman-Quarles-Charakterisierung der Lorentztransformationen des ℝn, Arohiv der Math.34, 550–559 (1980).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. S. M. Coxeter, A Geometrical Background for de Sitter’s World, Am. Math. Monthly50, 217–228 (1943).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Hawking andG. F. E. Ellis, The Large Scale Structure of Spacetime, Camb. Univ. Press, Cambridge, 1973.Google Scholar
  8. [8]
    J. A. Lester, Conformai Spaces, J. Geometry14, 108–117 (1980).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    —, A Physical Characterization of Conformai Transformations of Minkowski Spacetime, Annales of Discrete Mathematics18, 567–574 (1983).MATHMathSciNetGoogle Scholar
  10. [10]
    —, Cone-Preserving Mappings for Quadratic Cones over Arbitrary Fields, Can. J. Math.29, 1247–1253 (1977).MATHMathSciNetGoogle Scholar
  11. [11]
    -, Transformations ofn-Space Which Preserve a Fixed Square-Distance, Can. J. Math.81, 392–395.Google Scholar
  12. [12]
    —, The Beckman-Quarles Theorem in Minkowski Space for a Spacelike Square-Distance, Archiv der Math.87, 561–567 (1981).CrossRefGoogle Scholar
  13. [13]
    H. SchAEFER, Über eine Verallgemeinerung des Fundamentalsatzes in desargues- schen affinen Ebenen, Beiträge zur Geometrie und Algebra Nr. 6, Institut für Mathematik, Technische Universität München 36-41 (1980).Google Scholar
  14. [14]
    E. M. Schröder, Zur Kennzeichnung der Lorentztransformationen, Aeq. Math.19, 134–144 (1979).MATHCrossRefGoogle Scholar
  15. [15]
    E. Snapper andR. J. Troyer, Metric Affine Geometry, (Academic Press, 1971).Google Scholar

Copyright information

© Mathematische Seminar 1983

Authors and Affiliations

  • J. A. Lester
    • 1
  1. 1.Dept. Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations