Induced Conjugacy Classes in Classical Lie-Algebras

  • Gisela Kempken


Irreducible Representation Conjugacy Class Algebraic Group Weyl Group Irreducible Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    D. Alvis,G. LuszTiG, On Springers correspondence for simple groups of typeE n (n = 6, 7, 8). Preprint M.I.T. (1981).Google Scholar
  2. [2]
    P. Bala, R. W. Caeter, Classes of unipotent elements in simple algebraic groups II. Math. Proc. Camb. Phil. Soc.80, 1–18 (1976).MATHGoogle Scholar
  3. [3]
    W. Borho, Über Schichten halbeinfacher Lie-Algebren. Inventiones Math.65, 283–317 (1981).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Dixmier, Polarisation dans les algèbres de Lie semi-simples complexes. Bull. Sei. Math.99, 45–63 (1975).MATHMathSciNetGoogle Scholar
  5. [5]
    H. Kraft, Parametrisierung von Konjugationsklassen in sln. Math. Ann.234, 209–220 (1978).CrossRefMathSciNetGoogle Scholar
  6. [6]
    W. Hesselink, Polarizations in the classical groups. Math. Z.160, 217–134 (1978).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Hesselink, Singularities in the nilpotent scheme of a classical group. Trans. AMS222, 1–32 (1976).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Lusztig, A class of irreducible representations of a Weyl group. Proc. Nederl. Akad. Series A82 (3), 323–335 (1979). or[9]|G. Lusztig, N. Spaltenstein, Induced unipotent classes. J. London Math. Soc, to appear.MathSciNetGoogle Scholar
  9. [10]
    T. A. Springer,R. Steinberg, Conjugacy Classes. In: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math.181, Part E (1970).Google Scholar
  10. [11]
    S. J. Mayer, On the Characters of the Weyl Group of TypeG. Journal of Algebra33, 59–67 (1975).MATHCrossRefMathSciNetGoogle Scholar
  11. [12]
    S. J. Mayer, On the Characters of the Weyl Group of TypeD. Math. Proc. Camb. Phil. Soc.77, 259–264 (1975).MATHCrossRefGoogle Scholar
  12. [13]
    G. Lusztig, Irreducible Representations of Finite Classical Groups. Inventiones Math.43, 125–175 (1977).MATHCrossRefMathSciNetGoogle Scholar
  13. [14]
    N. Spaltenstein, Sous-groupes de Borel contenant un unipotent donné. Preprint, Warwick (1976).Google Scholar

Copyright information

© Mathematische Seminar 1983

Authors and Affiliations

  • Gisela Kempken
    • 1
  1. 1.Mathematisches Institut der Universität BaselBasel

Personalised recommendations