Advertisement

The determination of nodes and weights in wilf quadrature formulas

  • H. Engels
  • U. Eckhardt
Article

Keywords

Quadrature Formula Decimal Place Sample Problem Integration Rule Gaussian Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Eckhardt, Einige Eigenschaften Wilescher Quadraturformeln. Numer. Math.12 (1968) 1–7.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Engels, Über allgemeineGaussche Quadraturformeln. Computing10 (1972) 83–95.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Engels, Über ein numerisches Differentiationsverfahren mit ableitungsfreien Fehlerschranken. ZAMM53 (1973) T184-T185.MathSciNetGoogle Scholar
  4. [4]
    H. Engels undU. Eckhardt, SymmetrischeWilfsche Quadraturformeln. Berichte der KFA Jülich: Jül-1094-MA (1974) (internal report).Google Scholar
  5. [5]
    N. Richter, Properties of minimal integration rules. SIAM J. Numer. Anal.7 (1970) 67–79.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. Richter-Dyn, Properties of minmal integration rules II. SIAM J. Numer. Anal.8 (1971) 497–508.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. S. Wilf, Exactness conditions in numerical quadrature. Numer. Math.6 (1964) 315–319.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    V. I. Krylov, Approximate calculation of integrals, ACM monograph series, Macmillian, New York 1962.Google Scholar

Copyright information

© Mathematische Seminar 1979

Authors and Affiliations

  • H. Engels
    • 1
  • U. Eckhardt
    • 2
  1. 1.TH Aachen51 Aachen
  2. 2.Institut für Angewandte MathematikUniversität Hamburg2 Hamburg 13

Personalised recommendations