Skip to main content
Log in

Financial forecasting through unsupervised clustering and neural networks

  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

In this paper, we review our work on a time series forecasting methodology based on the combination of unsupervised clustering and artificial neural networks. To address noise and non-stationarity, a common approach is to combine a method for the partitioning of the input space into a number of subspaces with a local approximation scheme for each subspace. Unsupervised clustering algorithms have the desirable property of deciding on the number of partitions required to accurately segment the input space during the clustering process, thus relieving the user from making this ad hoc choice. Artificial neural networks, on the other hand, are powerful computational models that have proved their capabilities on numerous hard real-world problems. The time series that we consider are all daily spot foreign exchange rates of major currencies. The experimental results reported suggest that predictability varies across different regions of the input space, irrespective of clustering algorithm. In all cases, there are regions that are associated with a particularly high forecasting performance. Evaluating the performance of the proposed methodology with respect to its profit generating capability indicates that it compares favorably with that of two other established approaches. Moving from the task of one-step-ahead to multiple-step-ahead prediction, performance deteriorates rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alevizos P., Boutsinas B., Tasoulis D.K., Vrahatis M.N. (2002). Improving the orthogonal range searchk-windows clustering algorithm. Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, 239–245.

  • Alevizos P.,Tasoulis D.K., Vrahatis M.N. (2004). Parallelizing the unsupervisedk-windows clustering algorithm. Parallel Processing and Applied Mathematics (eds. R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski), Springer-Verlag, Lecture Notes in Computer Science vol. 3019, 225–232.

  • Allen F., Karjalainen R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics vol. 51, 245–271.

    Article  Google Scholar 

  • Bakker R., Schouten J.C., Giles C.L., Takens F., van den Bleek C.M. (2000). Learning of chaotic attractors by neural networks. Neural Computation vol. 12, 2355–2383.

    Article  Google Scholar 

  • Bezdek J.C. (1981). Pattern recognition with fuzzy objective function algorithms, Kluwer Academic Publishers.

  • Cao L. (2003). Support vector machines experts for time series forecasting. Neurocomputing vol. 51, 321–329.

    Article  Google Scholar 

  • Clerc M., Kennedy J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation vol. 6, 58–73.

    Article  Google Scholar 

  • de Bodt E., Rynkiewicz J., and Cottrell M. (2001). Some known facts about financial data. Proceedings of European Symposium on Artificial Neural Networks (ESANN’2001), 223–236.

  • Diks C., van Zwet W.R., Takens F., DeGoede J. (1996). Detecting differences between delay vector distributions. Physical Review E vol. 53, 2169–2176.

    Article  Google Scholar 

  • Eberhart R.C., Simpson P., Dobbins R. (1996). Computational intelligence PC tools. Academic Press.

  • Ester M., Kriegel H.P., Sander J., Xu X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 2nd Int. Conf. on Knowledge Discovery and Data Mining, 226–231.

  • Farmer J.D., Sidorowich J.J. (1987). Predicting chaotic time series. Physical Review Letters vol. 59, 845–848.

    Article  Google Scholar 

  • Frankel J.A., Rose A.K. (1995). Empirical research on nominal exchange rates. Handbook of International Economics (eds. G. Grossman and K. Rogoff), Amsterdam, North-Holland, vol. 3, 1689–1729.

    Google Scholar 

  • Fraser A.M. (1989). Information and entropy in strange attractors. IEEE Transactions on Information Theory vol. 35, 245–262.

    Article  Google Scholar 

  • Fritzke B. (1995). A growing neural gas network learns topologies. Advances in Neural Information Processing Systems (eds. G. Tesauro, D.S. Touretzky, and T.K. Leen), MIT Press, Cambridge MA, 625–632.

    Google Scholar 

  • Giles L.C., Lawrence S., Tsoi A.H. (2001). Noisy time series prediction using a recurrent neural network and grammatical inference. Machine Learning vol. 44, 161–183.

    Article  Google Scholar 

  • Hartigan J.A., Wong M.A. (1979). Ak-means clustering algorithm. Applied Statistics vol. 28, 100–108.

    Article  Google Scholar 

  • Hastie T., Tibshirani R., Friedman J. (2001). The elements of statistical learning. Springer-Verlag.

  • Haykin S. (1999). Neural networks: A comprehensive foundation. New York: Macmillan College Publishing Company.

    Google Scholar 

  • Igel C., Husken M. (2000). Improving the Rprop learning algorithm. Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000) (H. Bothe and R. Rojas, eds.), ICSC Academic Press, 115–121.

  • Kennel M.B., Brown R., Abarbanel H.D. (1992). Determining embedding dimension for phase—space reconstruction using a geometrical construction. Physical Review A vol. 45, 3403–3411.

    Article  Google Scholar 

  • Keogh E, and Folias T. (2002). The UCR time series data mining archive.

  • Kohonen T. (1997). Self-organized maps. Berlin: Springer.

    Google Scholar 

  • Magoulas G.D., Plagianakos V.P., Vrahatis M.N. (2001). Adaptive stepsize algorithms for on-line training of neural networks. Nonlinear Analysis: Theory Methods and Applications A vol. 47, 3425–3430.

    Article  Google Scholar 

  • Meese R.A., Rogoff K. (1983). Empirical exchange rate models of the seventies: do they fit out-of-sample? Journal of International Economics vol. 14, 3–24.

    Article  Google Scholar 

  • Meese R.A., Rogoff K. (1986). Was it real? the exchange rate-interest differential relation over the modern floating-rate period. The Journal of Finance vol. 43, 933–948.

    Article  Google Scholar 

  • Milidiu R.L., Machado R.J., Renteria R.~P. (1999). Time-series forecasting through wavelets transformation and a mixture of expert models. Neurocomputing vol. 28 145–156.

    Article  Google Scholar 

  • Moller M. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks vol. 6, 525–533.

    Article  Google Scholar 

  • Bank of International Settlements. (2001). Central bank survey of foreign exchange and derivative market activity in April 2001. Bank of International Settlements.

  • Parsopoulos K.E., Vrahatis M.N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing vol. 1235–1306.

  • Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Siriopoulos C., Vrahatis M.N. (2005). Computational intelligence methods for financial forecasting. Proceedings of the International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2005) (ed. T.E. Simos), Lecture Series on Computer and Computational Sciences vol. 4, 1416–1419.

  • Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Vrahatis M.N. (2005). Time series forecasting methodology for multiple-step-ahead prediction. Proceedings of IASTED International Conference on Computational Intelligence (CI2005), 456–461.

  • Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Vrahatis M.N. Computational intelligence methods for financial time series modeling. International Journal of Bifurcation and Chaos (in press).

  • Pinkus A. (1999). Approximation theory of the MLP model in neural networks. Acta Numerica, 143–195.

  • Plagianakos V.P., Magoulas G.D., Vrahatis M.N. (2000). Global learning rate adaptation in on-line neural network training. Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000).

  • Plagianakos V.P., Vrahatis M.N. (2002). Parallel evolutionary training algorithms for “hardware-friendly” neural networks. Natural Computing vol. 1, 307–322.

    Article  Google Scholar 

  • Principe J.C., Wang L., Motter M.A. (1998). Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proceedings of the IEEE vol. 86, 2240–2258.

    Article  Google Scholar 

  • Refenes A.N., Holt W.T. (2004). Forecasting volatility with neural regression: A contribution to model adequacy. IEEE Transactions on Neural Networks vol. 12, 850–864.

    Article  Google Scholar 

  • Riedmiller M., Braun H. (1993). A direct adaptive method for faster backpropagation learning: The Rprop algorithm. Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, 586–591.

  • Sandberg I.W., Xu L. (1997). Uniform approximation and gamma networks. Neural Networks vol. 10, 781–784.

    Article  Google Scholar 

  • Sandberg I.W., Xu L. (1997). Uniform approximation of multidimensional myopic maps. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 44, 477–485.

    Article  Google Scholar 

  • Sander J., Ester M., Kriegel H.-P., Xu X. (1998). Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery vol. 2, 169–194.

    Article  Google Scholar 

  • Sfetsos A., Siriopoulos C. (2004). Time series forecasting with a hybrid clustering scheme and pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans vol. 34, 399–405.

    Article  Google Scholar 

  • Storn R., Price K. (1997). Differential evolution — a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization vol. 11, 341–359.

    Article  Google Scholar 

  • Sutton R.S., Whitehead S.D. (1993). Online learning with random representations. Proceedings of the Tenth International Conference on Machine Learning, Morgan Kaufmann, 314–321.

  • Takens F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence (eds. D.A. Rand and L.S. Young), Lecture Notes in Mathematics, vol. 898, Springer, 366–381.

  • Tasoulis D.K., Vrahatis M.N. (2004). Unsupervised distributed clustering. IASTED International Conference on Parallel and Distributed Computing and Networks, 347–351.

  • Tasoulis D.K., Vrahatis M.N. (2005). Unsupervised clustering on dynamic databases. Pattern Recognition Letters vol. 26, 2116–2127.

    Article  Google Scholar 

  • Vrahatis M.N., Boutsinas B., Alevizos P., Pavlides G. (2002). The newk-windows algorithm for improving thek-means clustering algorithm. Journal of Complexity vol. 18, 375–391.

    Article  Google Scholar 

  • Walczak S., (2001). An empirical analysis of data requirements for financial forecasting with neural networks. Journal of Management Information Systems vol. 17, 203–222.

    Google Scholar 

  • Weigend A.S., Mangeas M., Srivastava A.N. (1995). Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting. International Journal of Neural Systems vol. 6, 373–399.

    Article  Google Scholar 

  • White H. (1990). Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks vol. 3, 535–549.

    Article  Google Scholar 

  • Wilson D.R., Martinez T.R. (1997). Improved heterogeneous distance functions. Journal of Artificial Intelligence Research vol. 6, 1–34.

    Google Scholar 

  • Yao J., Tan C.L. (2000). A case study on using neural networks to perform technical forecasting of forex. Neurocomputing vol. 34, 79–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlidis, N.G., Plagianakos, V.P., Tasoulis, D.K. et al. Financial forecasting through unsupervised clustering and neural networks. Oper Res Int J 6, 103–127 (2006). https://doi.org/10.1007/BF02941227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941227

Keywords

Navigation