Skip to main content
Log in

A note on pépin’s counter examples to the hasse principle for curves of genus 1

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

In a series of articles published in the C.R. Paris more than a century ago, T. PéPIN announced a list of “theorems” concerning the solvability of diophantine equations of the type ax4 +by 4 = z2. In this article, we show how to prove these claims using the structure of 2-class groups of imaginary quadratic number fields. We will also look at a few related results from a modern point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. S. Cassels,Lectures on elliptic curves. Cambridge University Press, 1991.

  2. J. Cremona,Higher descents on elliptic curves, preprint 1998.

  3. L. E. Dickson,History of the Theory of Numbers II. Chelsea Publishing, 1952.

  4. L. Dirichlet, Untersuchungen über die Theorie der quadratischen Formen.Abh. Königl. Preuss. Akad. Wiss. (1833), 101–121; Werke I, 195–218.

  5. L. Euler, Theorematum quorundam arithmeticorum demonstrationes.Comm. Acad. Sci. Petrop. 10 (1738) 1747, 125–146;Opera Omnia Ser. I vol. II, Commentationes Arithmeticae, 38–58.

    Google Scholar 

  6. _,Elements of algebra, Springer 1984; the Russian original appeared in 1769.

  7. A. Genocchi, Généralisation du théorème de Lamé sur l’impossibilité de l’équationx 7 +y17 +z 7 = 0.C. R. Acad. Sci. Paris 82 (1876), 910–913.

    Google Scholar 

  8. C. Goldstein, La théorie des nombres dans les Notes aux Comptes Rendus de l’Académie des Sciences (1870–1914): un premier examen.Riv. Stör. Sci. (2)2 (1994), (1995)137–160.

    Google Scholar 

  9. K. Ireland andM. Rosen,A classical introduction to modern number theory. Springer 1990.

  10. A. E. Kramer,De quibusdam aequationibus indeter. quarti gradus. Diss. Berlin 1839.

  11. F. Lemmermeyer, Rational quartic reciprocity.Acta Arith. 67 (1994), 387–390.

    MATH  MathSciNet  Google Scholar 

  12. _,On Tate-Shafarevich groups of some elliptic curves. Proc. Conf. Graz 1998.

  13. C.-E. Lind,Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Diss. Univ. Uppsala 1940.

  14. P. Morandi,Field and Galois Theory. Springer 1996.

  15. T. Nagell,Introduction to number theory. John Wiley & Sons 1951.

  16. E. Netto,Review 06011301, Jahrb. Fortschr. der Math.6 (1874), p. 113; see http://www.emis.de/MATH/JFM.html

    Google Scholar 

  17. Th. Pépin, Théorèmes d’analyse indéterminée.C. R. Acad. Sci. Paris 78 (1874), 144–148.

    Google Scholar 

  18. —, Impossibilité de l’équationx 7 +y 7 +z 7 = 0.C. R. Acad. Sci. Paris 82 (1876), 676–679, 743–747.

    Google Scholar 

  19. —, Théorèmes d’analyse indéterminée.C. R. Acad. Sci. Paris 88 (1879), 1255–1257.

    Google Scholar 

  20. —, Nouveaux théorèmes sur l’équation indéterminéeax 4 +by 4 = z2.C. R. Acad. Sci. Paris 91 (1880), 100–101.

    Google Scholar 

  21. —, Nouveaux théorèmes sur l’équation indéterminéeax 4 +by 4 = z2.C. R. Acad. Sci. Paris 94 (1882), 122–124.

    Google Scholar 

  22. L. Rédei, Die Diophantische Gleichungmx 2 +ny 2 = z2.Monatsh. Math. Phys. 48 (1939), 43–60.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Rédei undH. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers.J. reine angew. Math. 170 (1933), 69–74.

    Google Scholar 

  24. H. Reichardt, Einige im Kleinen überall lösbare, im Großen unlösbare diophantische Gleichungen.J. reine angew. Math. 184 (1942), 12–18.

    MathSciNet  Google Scholar 

  25. P. Ribenboim,13 lectures on Fermat’s Last Theorem. Springer 1979.

  26. H.E. Rose,On some classes of elliptic curves with rank two or three. Univ. Bristol Math. Res. Report PM-97-01.

  27. J. Silverman,The arithmetic of elliptic curves. Springer 1986.

  28. J. Silverman andJ. Täte,Rational points on elliptic curves. Springer 1992.

  29. A. Weil, Sur les origines de la géométrie algébrique.Compos. Math. 44 (1981), 395–406.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Lemmermeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmermeyer, F. A note on pépin’s counter examples to the hasse principle for curves of genus 1. Abh.Math.Semin.Univ.Hambg. 69, 335–345 (1999). https://doi.org/10.1007/BF02940884

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940884

Keywords

Navigation