Advertisement

Higher degree tame hilbert-symbol equivalence of number fields

  • Alfred Czogala
Article

Keywords

Prime Ideal Number Field Group Isomorphism Singular Element Power Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Carpenter, Finiteness theorems for forms over global fields.Math. Zeit. 209 (1992), 153–166.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. W. CASSELS andA. FRÖhlich,Algebraic Number Theory. Academic Press, 1967.Google Scholar
  3. [3]
    P. E. Conner, R. Perus, andK. Szymiczek, Wild sets and 2-ranks of class groups.Acta Arithm. 79 (1997), 83–91.MATHGoogle Scholar
  4. [4]
    A. Czogala, On reciprocity equivalence of quadratic number fields.Acta Arithm. 58 (1991),365–387.MathSciNetGoogle Scholar
  5. [5]
    —,On integral Witt equivalence of algebraic number fields.Acta Math, et Inform. Univ. Ostraviensis 4 (1996), 7–20.MATHMathSciNetGoogle Scholar
  6. [6]
    A. Czogala andA. Sladek, Higher degree Hubert symbol equivalence of number fields.Tatra Mountains Math. Publ. 11 (1997), 77–88.MATHMathSciNetGoogle Scholar
  7. [7]
    —, Higher degree Hubert symbol equivalence of number fields II.J. of Number Theory 72 (1998), 363–376.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Milnor, Algebraic K-Theory and quadratic forms.Invent. Math. 9 (1970), 318–344.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Neukirch,Class Field Theory. Springer, 1986.Google Scholar
  10. [10]
    W. Narkiewicz,Elementary and Analytic Theory of Algebraic Numbers. PWN Warszawa, Springer 1990.MATHGoogle Scholar
  11. [11]
    R. Perlis, K. Szymiczek, P. Conner, andR. Litherland, Matching Witts with global fields.Contemp. Math. 155 (1994), 365–387.MathSciNetGoogle Scholar
  12. [12]
    A. Sladek, Hubert symbol equivalence and Milnor K-functor.Acta Math. et Inform. Univ. Ostraviensis 6 (1998), 183–189.MATHMathSciNetGoogle Scholar
  13. [13]
    K. Szymiczek, Witt equivalence of global fields.Commun. Alg. 19(4) (1991), 1125- 1149.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    _, Tame Equivalence and Wild Sets.Semigroup Forum (To appear).Google Scholar
  15. [15]
    —, A characterization of tame Hilbert-symbol equivalence.Acta Math. et Inform. Univ. Ostraviensis 6 (1998), 191–201.MATHMathSciNetGoogle Scholar
  16. [16]
    _,Bilinear Algebra. Gordon and Breach, 1997.Google Scholar
  17. [17]
    J. Täte, Relations betweenK 2 and Galois cohomology.Invent. Math. 36 (1976), 257–274.CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1999

Authors and Affiliations

  1. 1.Institut of MathematicsSilesian UniversityKatowicePoland

Personalised recommendations