Advertisement

Nearly holomorphic eisenstein liftings

  • S. Mizumoto
Article

Keywords

Modular Form Fourier Coefficient Eisenstein Series Cusp Form Modular Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    A. N. Andrianov,Quadratic Forms and Hecke Operators. Springer 1987.Google Scholar
  2. [2]
    T. Arakawa, Vector valued Siegel’s modular forms of degree two and the associated AndrianovL-functions.Manuscripta Math. 44 (1983), 155–185.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    S. Böcherer, Über die Funktionalgleichung automorpherL-Funktionen zur Siegelschen Modulgruppe.J. reine angew. Math. 362 (1985), 146–168.MATHMathSciNetGoogle Scholar
  4. [4]
    —, Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe.Abh. Math. Sent. Univ. Hamburg 56 (1986), 35–47.MATHCrossRefGoogle Scholar
  5. [5]
    B. Diehl, Die analytische Fortsetzung der Eisensteinreihe zur Siegelschen Modulgruppe.J. reine angew. Math. 317 (1980), 40–73.MATHMathSciNetGoogle Scholar
  6. [6]
    E. Freitag,Siegelsche Modulfunktionen. Springer 1983.Google Scholar
  7. [7]
    P. B. Garrett, Pullbacks of Eisenstein series; applications.Prog. Math. 46, Birkhäuser (1984), 114–137.MathSciNetGoogle Scholar
  8. [8]
    —, Decomposition of Eisenstein series: Rankin triple products.Ann. Math. 125 (1987), 209–235.CrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Harris, The rationality of holomorphic Eisenstein series.Inv. Math. 63 (1981), 305–310.MATHCrossRefGoogle Scholar
  10. [10]
    V. L. Kalinin, Eisenstein series on the symplectic group.Math. USSR Sbornik 32 (1977), 449–476.CrossRefGoogle Scholar
  11. [11]
    H. Klingen, Zum Darstellungssatz für Siegelsche Modulformen.Math. Z.102 (1967), 30–43.CrossRefMathSciNetGoogle Scholar
  12. [12]
    N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two.Inv. Math. 49 (1978), 149–165.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    —, On Siegel eigenforms.Proc. Japan Acad. 57A (1981), 47–50.MathSciNetGoogle Scholar
  14. [14]
    —, On Eisenstein series for Siegel modular groups.Proc. Japan Acad. 57A (1981), 51–55.MathSciNetGoogle Scholar
  15. [15]
    —, On Eisenstein series for Siegel modular groups II.Proc. Japan Acad. 57A (1981), 315–320.MathSciNetGoogle Scholar
  16. [16]
    R. P. Langlands,On the Functional Equations Satisfied by Eisenstein Series. Lect. Notes in Math.544, Springer 1976.Google Scholar
  17. [17]
    H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen.Math. Ann. 121 (1949), 141–183.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    -,Siegel’s modular forms and Dirichlet series. Lect. Notes in Math.216, Springer 1971.Google Scholar
  19. [19]
    S. Mizumoto, Integrality of critical values of triple productL-functions.Lect. Notes in Math. 1434, Springer (1990), 188–195.CrossRefMathSciNetGoogle Scholar
  20. [20]
    —, Poles and residues of standardL-functions attached to Siegel modular forms.Math. Ann. 289 (1991), 589–612.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    —, Eisenstein series for Siegel modular groups.Math. Ann. 297 (1993), 581–625; Corrections, ibid.307 (1997), 169-171.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    —, On integrality of Eisenstein liftings.Manuscripta Math. 89 (1996), 203–235; Corrections, ibid.90 (1996), 267-269.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    H. L. Resnikoff andR. L. Saldaña, Some properties of Fourier coefficients of Eisenstein series of degree two.J. reine angew. Math. 265 (1974), 90–109.MATHMathSciNetGoogle Scholar
  24. [24]
    T. Satoh, Various observations on non-holomorphic modular forms.Unpublished manuscript, 1985.Google Scholar
  25. [25]
    —, On certain vector valued Siegel modular forms of degree two.Math. Ann. 274 (1986), 335–352.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    —, Some remarks on tripleL-functions.Math. Ann. 276 (1987), 687–698.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Shimura, The special values of the zeta functions associated with cusp forms.Comm. pure appl. Math 29 (1976), 783–804.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    —, On Eisenstein series.Duke Math. J. 50 (1983), 417–476.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    —, On a class of nearly holomorphic automorphic forms.Ann. Math. 123 (1986), 347–406.CrossRefMathSciNetGoogle Scholar
  30. [30]
    —, Nearly holomorphic functions on hermitian symmetric spaces.Math. Ann. 278 (1987), 1–28.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    —, Eisenstein series and zeta functions on symplectic groups.Inv. Math. 119 (1995), 539–584.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    C. L. Siegel, Einführung in die Theorie der Modulfunktionenn-ten Grades.Gesamm. Abh. II, 32, Springer 1966.Google Scholar
  33. [33]
    N.-P. Skoruppa, Computations of Siegel modular forms of genus two.Math. Comp. 58 (1992), 381–398.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    R. Weissauer,Stabile Modulformen und Eisensteinreihen. Lect. Notes in Math.1219, Springer 1987.Google Scholar
  35. [35]
    D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields.Lect. Notes in Math. 627, Springer (1977), 105–169.CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 1997

Authors and Affiliations

  1. 1.Shin-ichiro Mizumoto, Department of MathematicsTokyo Institute of TechnologyOh-okayama, Meguro-ku, TokyoJapan

Personalised recommendations